
Final Thesis Report:

An Analysis of Alternative Lighting & Electrical System Solutions

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING FRANKLIN & MARSHALL COLLEGE LANCASTER, PA

> Jason Weaver Lighting Advisor: Dr. Mistrick Electrical Advisor: Prof. Dannerth Lighting/Electrical Option 04/09/2008

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING

Project Team:

Franklin and Marshall College

Owner: Franklin and Marshall College Construction Manager: Turner Construction Company Architect: Einhorn Yaffee Prescott Architecture & Engineering Structural Engineer: Einhorn Yaffee Prescott MEP Engineer: Einhorn Yaffee Prescott

Project Data:

Size: 104,000 sq. ft. Floors Above Grade: 3 Total Floors: 4 Project Cost: GMP of \$39 million Bid Method: Design-Bid-Build Dates of Construction: December 2005 - August 2007

Architecture:

-Georgian Revival Style -Brick façade, tooled to match existing buildings -Modern 3-story atrium acts as core of building -Basement Vivarium for visual research

Mechanical:

-Two roof-mounted Air Handling Units with capacity up to 50,000 cfm of supply air -Central Utility Plant immediately adjacent to main building contains chiller for this building -Basement contains domestic water heater service

-Medium-pressure steam service from main campus service facility

Structural:

-Steel framing supporting 6 ½" composite concrete slab

-5" concrete slab-on-grade

-2'6" foundation wall with spread footings -Roof is Vermont slate shingles supported by galvanized metal decking on structural steel

Electrical:

-15 KV service from Franklin & Marshall main switchgear for entire campus
-12.47 KV servicing substation transformed down to 480Y/277V secondary service voltage
-Step down transformers to 208Y/120V for receptacles and incandescent loads
-350 KW diesel generator for emergency

power generation

Lighting:

-Majority of lighting operates at 277V -Recessed, louvered linear fluorescent luminaires for classrooms, labs, and offices -Recessed compact fluorescent downlights for corridors and circulation spaces -Daylight sensor photocell in atrium, dimming systems in common room and lecture hall

PENNSTATE

Jason Weaver Lighting/Electrical Option

CPEP Website: http://www.engr.psu.edu/ae/thesis/portfolios/2008/jpw202/

Table of Contents

Executive Summary	4
Building Overview	5
Lighting Depth- Redesign of Selected Spaces	10
East Entry and Façade	12
Ecology Teaching Laboratory	28
Frey Atrium	52
Bonchek Lecture Hall	67
Electrical Depth	91
Analysis of Circuits Affected By Lighting Design	92
Analysis of Central Transformer vs. Distributed	129
Analysis of Aluminum Feeders vs. Copper	134
Protective Device Coordination Study	138
Acoustical Breadth	143
Mechanical Breadth	148
Summary and Conclusions	153
References	154
Acknowledgements	155
Index of Figures	156
Index of Tables	157

Appendices

A:	Lighting Depth Study Supplement	158
B:	Electrical Depth Study Supplement	224
C:	Breadth Studies Supplement	255

Executive Summary

The following thesis report details the analytical and design feasibility studies performed on the Ann and Richard Barshinger Life Sciences & Philosophy Building on the campus of Franklin & Marshall College. Particular focus was given to the lighting and electrical systems, with limited analysis of air distribution systems and acoustical materials.

The Lighting Depth focused on the new lighting design for four spaces. Each space had different goals and design objectives, but in all layouts I strove to create a functional, user-friendly design. The majority of the luminaires used are relatively common in the market, making correct installation of the products both easier and more likely. For the East Entry, I paid particular attention to the optics and shielding on the luminaires to make the exterior more dark-sky friendly. In the Frey Atrium, I performed a daylight analysis and created a custom pendant to act as the focal point for the space. For the Ecology Teaching Laboratory, I created a task-oriented layout (putting lighting over the workstations, counters, and chalkboard) and analyzed switching layouts to determine the best control scheme. Finally, in the Bonchek Lecture Hall, I designed a new ceiling for the space and created dimming scenes for four common functions of the space.

The Electrical Depth analyzes two of the most relevant issues to the design of this and many building today: central transformers and aluminum feeders. The first study analyzes using one central 480 V to 208Y/120 V transformer in place on several distributed transformers in the local electrical rooms on each floor. While the layouts tend to become simpler, it often is a more expensive option because of the increased wire sizes that are required with this option. This case was no exception, and as a result I would not recommend this layout. The second study analyzes using aluminum feeders throughout the building instead of copper. With proper installation, this does prove to be a good cost-saving option. I also analyzed the branch circuits and panelboards affected by the new lighting design and performed a protective device coordination study and a fault current analysis. With the exception of a change from 60A to more common 100A panels, the original design appears to be functioning properly.

The Acoustical Breadth analyzed the acoustical characteristics of the new ceiling in the lecture hall. The ceiling was designed to reflect sound to the back of the space as efficiently as possible. With the new ceiling, the lecture hall had a reasonable reverberation time and passed STC and IIC standards. The Mechanical Breadth involved creating a new diffuser layout in the lecture hall, since the new ceiling removed all of the original diffuser locations. I used a linear, low-width diffuser throughout to evenly distribute air throughout the room and to be as minimally intrusive as possible.

Building Overview

Building Statistics:

Building Name: Ann and Richard Barshinger Life Sciences and Philosophy Building

<u>Location and Site:</u> Franklin and Marshall College, Lancaster, PA (main access from Race Avenue)

<u>Building Occupants:</u> -Department of Biology; -Department of Philosophy; -Department of Psychology; -Biological Foundations of Behavior Interdisciplinary Program; -Scientific and Philosophical Studies of Mind Interdisciplinary Program

<u>Size:</u> 104,000 sq. ft. <u>Number of Stories Above Grade:</u> 3 <u>Total Levels:</u> 4

Project Team:

<u>Owner:</u> Franklin and Marshall College <u>Owner's Representative:</u> Kevin Orris, VP of Administration <u>Construction Manager:</u> Turner Construction Company <u>Architect:</u> Einhorn Yaffee Prescott Architecture & Engineering, P.C. <u>Structural Engineer:</u> Einhorn Yaffee Prescott <u>MEP Engineer:</u> Einhorn Yaffee Prescott <u>Interior Design and Planning:</u> Einhorn Yaffee Prescott <u>Civil Engineering:</u> Derck + Edson Associates <u>Landscape Architecture:</u> Halvorson Design Partnership

Dates of Construction: December 2005 - August 2007

<u>Project Cost:</u> Guaranteed Maximum Price was \$39 million (Actual Cost - \$38 million)

Project Delivery Method: Design-Bid-Build, GMP

Architecture (Design/Function):

This building was designed in the Georgian Revival style. The core of the building is perfectly symmetrical. The front door is centered with a complex entablature and modern columns pronouncing it. Two-story glass windows and pilasters also emphasize this as the main entrance. Windows are in symmetrical rows, and aligned both horizontally and vertically. Breaking this symmetry is the far west end of the building. This area, which contains greenhouses and a lounge, is more modern in styling because of extensive glass area, but still has much of the same character of the rest of the facade. Inside, the building revolves around a central three-story atrium with an open staircase and balcony-style corridors. The philosophy and psychology departments are housed on either end of the first floor. The philosophy department is adjacent to one of the feature areas of the buildings: the Humanities Common Room and Gardens, which the university wants to use as a meeting room and study area. Immediately in back of the atrium (and viewable from the front door) is a 120-seat lecture hall that the university wants to use for professional speakers and seminars. The second and third floors are devoted mostly to lab space and functions of the biology department. The main corridor on each floor resembles a "V" shape, with the vertex at the atrium/main staircase. The interior has a relatively open plan, and clear glass walls in many spaces further enhance this open plan.

Major National Model Codes:

- 2003 IBC with 2004 Supplement
- 2003 IFC
- 2003 NFPA
- 2003 IMC
- 2003 IPC
- 2002 NEC
- ASHRAE 90.1

Zoning: Lancaster City

Historical Requirements:

In order to maintain a consistent architecture throughout the campus, Franklin & Marshall College required the architects to match key facade elements (not the least of which was the brick laying technique) of the surrounding buildings.

Building Envelope:

The roofing is a Vermont slate, chosen and entirely paid for by a single donor to match the character of the surrounding buildings. The majority of the facade is brick, but laid in and tooled in a matter more typical of the surrounding buildings. The architect and college wanted the brick imperfections, thicker mortars, and less crisp lines that most modern brick structures don't have. The majority of the glass of the façade is a 1 inch insulating glass unit, with heat-strengthened glass for the skylights and an even more transparent glass over the greenhouse areas.

System Descriptions:

Structural:

The main structural system for the building is a steel frame supporting composite concrete slabs. The typical beam size is W16X26, which distribute the floor loads to girders (typically sized at W18X90). Steel columns are typically W12X65, and are spaced around 20' feet apart between girders and 32' apart between beams. The floors are a 6 ½ composite concrete slab, consisting of 4 ½" normal weight concrete on 2" 18-gage galvanized metal decking. The foundation system is comprised of a 2-6" foundation wall with spread footings. A 5" concrete slab-on grade finishes the basement system. The Vermont slate shingles on the exterior of the roof are supported by galvanized metal decking on structural steel.

Construction:

Construction on the building started in December of 2005. Originally bid and awarded to Skanska, the project was re-awarded to Turner Construction while the building was under construction. The project was bid at a Guaranteed Maximum Price of \$39 million. The building was completed and turned over to Franklin & Marshall in August 2007.

Many key elements of the site had to be preserved during demolition, namely the east sidewalk (which connected the campus to the city) and most of the trees. The east side of the site was virtually untouched during demolition, as a large amount of the campus relies on power lines running underground here. A new asphalt driveway was poured to connect the basement loading dock on the west end of the building to an existing parking lot and Race Avenue. Construction staging was originally on the north end of the site, but later in construction was moved to this driveway.

<u>Lighting:</u>

The majority of the lighting in the building runs on 277V (the notable exception being the incandescent lighting, which runs on 120V). Typical classroom, lab, and office spaces use recessed linear fluorescent fixtures with louvers for shielding. In most of these spaces, recessed compact fluorescent wallwashers are used to highlight a chalkboard wall. Most circulation spaces use a layout of recessed round compact fluorescent and linear fluorescent downlights. Specialty spaces use more incandescent lighting, with the humanities common room using incandescent lighting exclusively (in the form of chandeliers, matching wall sconces, and recessed accent lighting). The atrium uses a track system with halogen lighting and cold cathode lighting mounted in a ceiling cove. More extensive exterior lighting is planned for the future, but currently consisted of lighting on the main entrances, existing walkway lightings, and uplights highlighting the beds in the gardens on the south side of the building.

Electrical:

The main power for the Life Sciences & Philosophy comes from the main switchgear for Franklin & Marshall College. Power is run from existing lines in the front of the building to a basement substation at the northwest corner of the building. The 12.47KV service voltage is transformed down to 480Y/277V secondary service. Power is then distributed to various basement panels, 2 bus ducts, and the penthouse level. Each bus ducts serves one half of the building (north or south), and there are 2 electrical rooms on each floor (again, one on the north side of the building, the other servicing the south side). Most of the lighting runs on 277V. There are transformers converting the voltage down to 208Y/120 V service in each electrical room, on the penthouse level, and the main mechanical room. The 208Y/120 service is used for receptacle loads, incandescent lighting, and much of the heating for the space. The main emergency power system for the building is a 300KW diesel powered generator. Power is distributed from the generator at 480Y/277V. 2 main lines run from the generator: one at 400A and one at 100A. 2 4-pole automatic transfer switches are mounted in the penthouse to power the emergency panels, rated at 400A and 100A respectively. The main emergency panels are also located in the penthouse level, which then distribute power to basement emergency panels. Emergency power also passed through a transformer (converting to 208Y/120V service), and is distributed to emergency panels in the south electrical room of each floor.

Mechanical:

Three air handling units serve the building. Two AHUs with supply air rated at 50,000 CFM each serve the majority of the building, while one rated at 15,000 CFM serves exclusively the vivarium. The system uses a glycol energy recovery loop that exchanges energy between the exhaust air and the outdoor air. This in effect reduces the temperature difference the rest of the heating/cooling system must make up before supplying the air to the spaces. Next to the building is the existing Central Utility Plant, which is being expanded as part of this project. The CUP contains a 550-ton centrifugal chiller for the Life Sciences Building, as well as the fuel oil pump for the building. A 550-ton cooling tower is located on the roof of the main building. Domestic water service is located in the basement. While low-pressure steam service comes from a boiler on the roof, the medium-pressure steam service comes from a central campus facility.

Fire Protection:

The main fire alarm control panel is located in the basement, and is linked to fire alarm terminal cabinets on each floor. Those terminal cabinets are linked to smoke and heat detectors throughout the floor, as well as strobe and speaker circuits and magnetic door holders. The third floor terminal cabinet also services the penthouse/roof level, where smoke exhaust is monitored and controlled. The building is fully equipped with a sprinkler system.

Transportation:

There are three main stairwells in the space. The main staircase is an open staircase in the atrium, services the first, second, and third floors of the building. The other two staircases are enclosed, and are located on the north and south ends of the building, respectively. These two staircases service all floors and the roof of the building. In addition, there is a small open staircase on the south side of the building connecting the basement to the first floor. One elevator, located in the center of the building but away from any major entrances, serves all floors and the penthouse/roof.

Telecommunications:

The main telecommunications lines are run into Room M058 in the central part of the basement. From this room, telecommunications lines are run into two smaller telecomm/data rooms on each floor (one on the north end, one on the south end). Telecommunications services include telephone, closed circuit surveillance, data communications, door access/control, and cable TV. Wireless internet service was also provided by F&M College.

Lighting Depth

Overview:

For the lighting depth, I have selected four spaces to perform detailed lighting design and analysis. These spaces were selected either for their important or impact of the function of the building, or because the space is representative of several others throughout the building (thus lending itself well to repetition of key elements).

Selected Spaces:

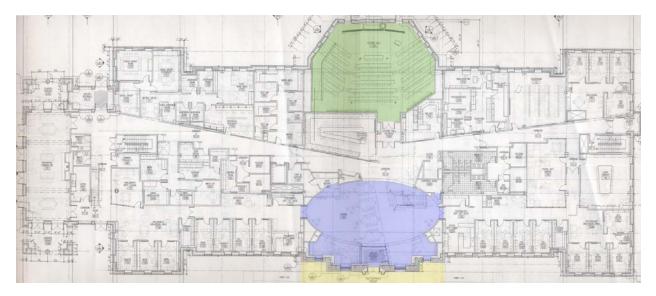
Exterior Space – East Entry and Façade

This is the main entrance for the building. It lies along a critical link for the campus to the main town area. In addition, this is by far the most interesting façade of the building, with pilasters, large arched windows, and extensive stonework making this a distinctive façade that needs a complementary lighting design.

Circulation Space – Frey Atrium

The east (and main) entry into the Life Sciences and Philosophy Building leads to this atrium. This acts as the circulation core for the entire building, and most everyday users and all university guests must go through this space. The unique elliptical shape, 3-story height, and many modern elements make this an interesting space for study.

Work Space – Ecology Teaching Laboratory


While not a particularly distinctive space in its own right, this laboratory is a great representative of the many other lab spaces in the building, in terms of both size and usability. As a result, it makes the most sense to perform a full lighting design analysis here, and then repeat the concepts in the other labs as appropriate.

Special Purpose Space – Bonchek Lecture Hall

This space was designed as a guest lecture space for use by both the occupying departments and Franklin & Marshall College as a whole. The space has many different design elements and parameters, including three projection screens, good-sized windows facing west, and a cove ceiling system. This space also lends itself well to breadth studies

Spatial Relationships:

Figure 1.01 First Floor Plan – Life Sciences & Philosophy Building *Yellow* = East Entry ; *Blue* = Atrium ; *Green* = Lecture Hall

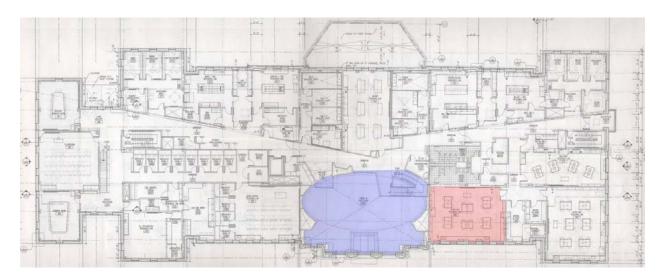


Figure 1.02 Second Floor Plan – Life Sciences & Philosophy Building Blue = Atrium; Red = Ecology Lab

04/09/2008

East Entry & Facade

Overview:

The east entry and facade is a critical space for several reasons. First, it is the entrance that the vast majority of users and guests will use. This façade will be one of the first impressions people will get of Franklin & Marshall College, due to the building's location along the Harrisburg Pike, and because Franklin & Marshall is using photos and rendering of this façade to advertise for the university as a whole. In addition, this façade faces the football stadium and football parking, so even casual visitors will see this façade frequently. One could argue that this is the most critical façade of the entire campus, let alone for this building.

The scope of this space can be defined as the sum of three parts: the façade, the entrance, and the walkway. Each has different design criteria, but in order to be most effective, all three have to be integrated into one seamless design. This can be done by using similar finishes, similar luminaires, similar shapes, etc. The façade is a great example of Georgian revival architecture, complete with pilasters, large windows with white mullions, elaborate stonework, and overall perfect symmetry across the main entry. The entry itself is normally scaled, but the main entrance itself is very long and narrow, and is a couple of feet above ground level. The walkway is the same pink sidewalk Franklin & Marshall College uses throughout the campus. Immediately north on the walkway in the bridge that links the college to the town; not far south on the walkway are the dormitories and other college departments.

Plans:

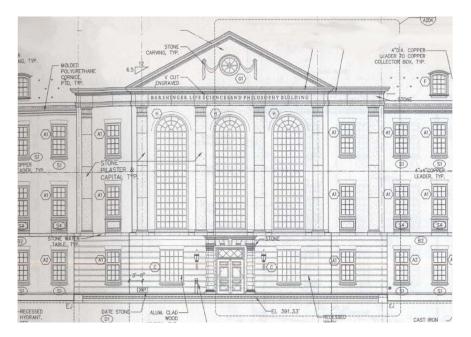


Figure 2.01 East Elevation – Life Sciences & Philosophy Building

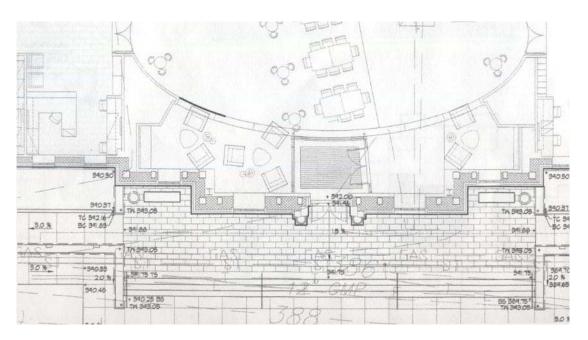


Figure 2.02 Exterior Plan – Life Sciences & Philosophy Building

Surface Characteristics:

<u>Surface</u>	<u>Material</u>	<u>Color</u>	Reflectance	<u>Finish</u>
Main Façade	brick	burnt red	30%	matte
Pilasters / Columns	stone	beige	40%	matte
Carvings	stone	beige	40%	matte
Cornices	polyurethane	beige	40%	semi-gloss
Ground	grass	green	18%	matte
Walkways	concrete	pale pink	40%	matte
Entry	precast concrete unit pavers	grey	20%	matte
Window / Door Trim	painted wood	white	70%	matte

Table 2.01 Surface Characteristics - Exterior and Façade

Illuminance Requirements:

IESNA Reference: Building Exteriors – Entrances - Active

Horizontal Illuminance: 5 fc Vertical Illuminance: 3 fc

Analysis: This seems appropriate, though certain areas of the façade will be higher for emphasis.

Design Criteria and Goals:

Most Important:

Appearance of Space and Luminaires:

• This is the façade that Franklin & Marshall College emphasized when they marketed the building on their website. The façade should be as distinct at night as it is during the day.

Direct Glare:

• This is a security issue. Luminaires that cause glare can temporarily disable people's vision, which is effectively the same as having no light at all, and removes a person's sense of safety.

Modeling of Faces and Objects:

• In order to make people feel more secure, they must have enough light to recognize faces. They must be able to see any object that might interfere with their path and any potential threats.

Points of Interest:

• Key parts of the façade to emphasize are the pilasters, the carvings (including the building name), and the entablature. Also important to draw attention to is the entrance.

Special Considerations:

• One of my design goals is to make the exterior space more dark sky friendly. As a standard, I am shooting for a standard of "CUT-OFF" or "FULLY SHIELDED" or better.

Also Important:

Light Distribution on Surfaces:

• There should be no areas on the sidewalk or entry that appear dark, as dark is associated with unsafe. Spacing of the poles is going to have to be analyzed.

Luminance of Surfaces:

• Generally, most of the surfaces are darker than interior surfaces, and are going to have to be lit to somewhat higher levels than normal. No spot on the building can appear overly bright, as they would effectively create glare because of the dark surround.

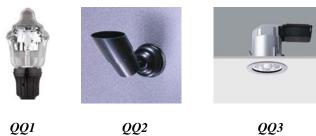
Reflected Glare:

• Light can potentially be reflected by the glass and cause glare on people walking past the building.

Shadows:

• Fixtures must be aimed in order to keep shadowing off the walkways and entrances, in order to maintain a secure atmosphere.

Illuminance (Horizontal and Vertical):


• Good horizontal illuminance is required for the walkways and entrance. Good vertical illuminance is needed for the façade.

Luminaire Schedule

<u>Label</u>	<u>Quantity</u>	Description	<u>Number of</u> <u>Lamps /</u> <u>Linear</u> <u>Feet</u>	<u>Lamp</u> <u>Type</u>	<u>Voltage</u>
QQ1	6	Street "acorn" pole fixture with internal reflector to meet "Cutoff" criteria	1	150W MH	277
QQ2	6	Wall-mounted HID projector with 10 degree beam spread and 45 degree shielding	1	39W PAR30L MH	277
QQ3	2	Recessed exterior HID downlight	1	70W CMH	277
QQ4A	1	Linear LED floodlight luminaire with asymmetric optics	36	LED	277
QQ4B	2	Linear LED floodlight luminaire with asymmetric optics	19.5	LED	277
QQ5	2	Exterior wall-mounted acorn fixture at smaller scale to pole fixture	1	39W PAR30L MH	277

 Table 2.02
 Compressed Luminaire Schedule for Exterior and Façade
 For Full Luminaire Schedule and Details, Please Refer to Appendix A

QQ1

QQ4a, QQ4b

Ballast Schedule:

<u>Label</u>	<u>Ballast / Driver</u> <u>Type</u>	<u>Power</u> <u>Factor</u>	<u>Ballast</u> <u>Factor</u>	<u>Ballast /</u> <u>Driver</u> <u>Watts</u>
QQ1	Magnetic HID	0.90	-	173
QQ2	Electronic HID	0.95	-	45
QQ3	Electronic HID	0.90	-	79
QQ4A	24V LED Driver	-	-	505.4
QQ4B	24V LED Driver	-	-	280.8
QQ5	Electronic HID	0.95	-	45

Table 2.03 Compressed Ballast Schedule for Exterior and FaçadeFor Full Ballast Details Please Refer to Appendix A

Light Loss Factors:

Label	Maint. Cat.	Degree of Dirt	Cleaning Schedule	Distrib. Cat.	Ballast Factor	Lumin. Dirt Deprec.	Lamp Lumen Deprec.	Room Surface Dirt Deprec.	Total LLF
QQ1	V	Medium	12 mths	Direct	1.000	0.827	0.692	1.000	0.572
QQ2	VI	Medium	12 mths	Indirect	1.000	0.804	0.800	1.000	0.643
QQ3	V	Medium	12 mths	Direct	1.000	0.827	0.710	1.000	0.587
QQ4A	VI	Medium	12 mths	Indirect	1.000	0.804	0.700	1.000	0.563
QQ4B	VI	Medium	12 mths	Indirect	1.000	0.804	0.700	1.000	0.563
QQ5	V	Medium	12 mths	Direct	1.000	0.827	0.800	1.000	0.662

 Table 2.04
 Light Loss Factors for Exterior and Facade

Lighting Plan:

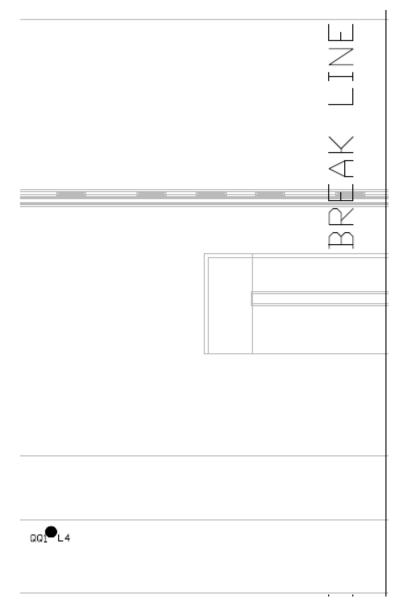


Figure 2.03 East Entry and Façade Lighting Plan – South of Entry

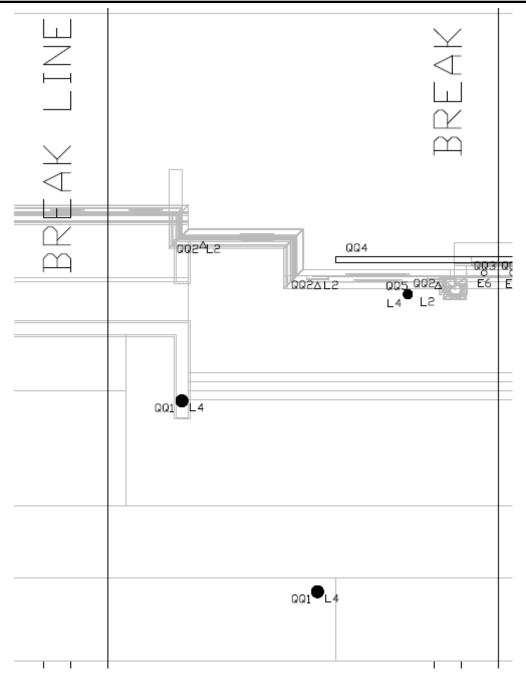


Figure 2.04 East Entry and Façade Lighting Plan – South Side of Entry

Note: Design is symmetrical across the main entry; therefore the north side of the plan is exactly the same as the south side.

Details:

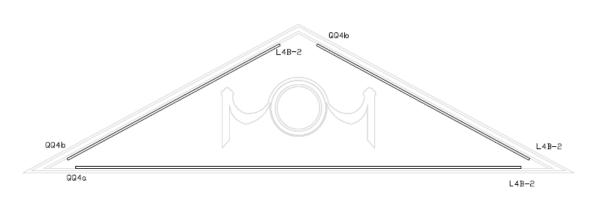


Figure 2.05 Pediment Lighting Layout – Fixture QQ4

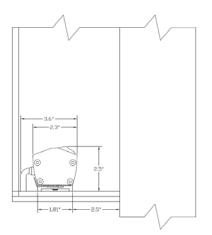
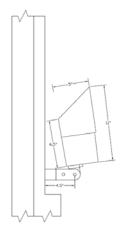



Figure 2.06 Mounting Detail – Fixture QQ4

Figure 2.07 Mounting Detail – Fixture QQ2

Controls:

The exterior luminaires will be connected to a photocell to determine when they need to switch on. The photocell should be set so that the luminaires turn on at one hour before sunset, and turn on at one hour after sunrise. This allows the automatic shut-off requirement to be met for the exterior.

Calculations and Performance:

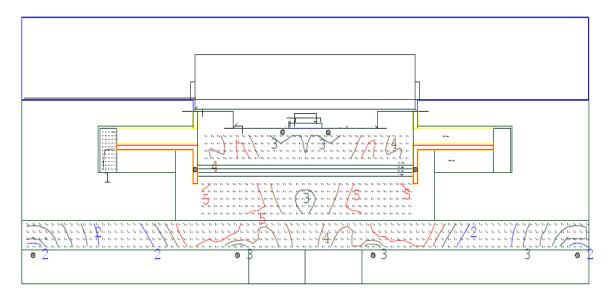


Figure 2.08 East Entry and Façade – Plan of AGI Model with Footcandle Isolines

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Rendered Images:

Figure 2.09 East Entry and Façade Rendering – View from Stadium

Figure 2.10 East Entry and Façade Rendering – Looking North on Path

Figure 2.11 East Entry and Façade Rendering – Main Entrance

Power Density Calculations:

According to ASHRAE 90.1 – 2004, exterior power allowances for lighting fall into two categories: tradable and non-tradable. The façade falls into the non-tradable category, and any excess allowance not used for lighting the façade cannot be counted towards the power allowance for any other space. The rest of the exterior falls into the tradable category, and can be lumped together as one group.

Area of Space	Matching ASHRAE Category	Power Allowance	<u>Length</u> <u>(ft)</u>	<u>Area</u> (ft ²)	<u>Watts</u> <u>Allowed</u>
Walkway	Walkway < 10 Feet Wide	1.0 W/ft	162	-	162
Plaza	Plaza/Walkway > 10 Feet Wide	0.2 W/ft^2	-	3660	732
Stairway	Stairway	1.0 W/ft ²	-	221	221
Main Entrance	Main Entrance	30.0 W/ft	6	-	180

Total Allowed 1295 W

Туре	Quantity	Input Watts / Luminaire	Total Watts / Type
QQ1	6	173	1038
QQ3	2	79	158
QQ5	2	45	90

Total watts Consumed 1280 W	Total Watts Consumed	1286 W
-----------------------------	----------------------	--------

Table 2.06 Power Consumed by Exterior Tradable Areas

<u>Area of Space</u>	Matching ASHRAE Category	<u>Power</u> <u>Allowance</u>	<u>Length</u> <u>(ft)</u>	<u>Area</u> (ft ²)	Watts Allowed
Façade	Façade	0.2 W/ft^2	-	9120	1824

Total Allowed	1824 W
----------------------	--------

 Table 2.07
 Power Allowance for Façade (Non-Tradable)

Type	Quantity	<u>Input Watts / Luminaire</u>	<u> Total Watts / Type</u>	
QQ2	6	45	270	
QQ4a	1	505.44	505.44	
QQ4b	2	280	560	

Total Watts Consumed	1335.44 W		

Table 2.08 Power Consumed by Façade

Based on the above calculation, the space meets the energy requirements set forth in ASHRAE 90.1 – 2004.

Conclusions:

This design is a slightly modern take on a simple and traditional design. Acorn pole lighting on its own is hardly cutting edge. However, what makes luminaire Type QQ1 (a version of an acorn pole luminaire) different is optics. With a reflector embedded in the glass to reflect light across the ground, this luminaire becomes a "Full-Cutoff" luminaire, and this helps dramatically reduce light pollution without reducing luminaire spacing or aesthetic appeal. All of the luminaires in this layout have some characteristic that helps to reduce light pollution. Type QQ2, lighting the pilasters, has a very narrow spot distribution and shielding that cuts off any light that missed the building. Type QQ4, highlighting the pediment, has asymmetric optics that directs all of the light towards the pediment. Even Type QQ5, a wall-mounted acorn luminaire, is "Semi-Cutoff". While I stated earlier that my goal was at least "Cut-Off" or "Fully Shielded", in order to get the scale and appearance of luminaire I wanted, the best I could accomplish was "Semi-Cutoff". However, the candelas above 90 degrees nadir are not particularly high (less than 100), and a lot of this strikes the building. The design highlights the traditional elements of the space (namely the pediment and the pilasters) in modern ways (LED optics and narrow spot metal halides), limits light pollution, and manages to come under the energy budget. I feel the design is well suited for this building.

Frey Atrium

Overview:

The Frey Atrium acts as the core of the entire Life Sciences & Philosophy Building. Most of the everyday users, and all of the university guests, enter the building from the east entrance into the atrium. It acts as a direct link to the Bonchek Lecture Hall, the Psychology and Philosophy Departments on the first floor. The open staircase is the main access path to the second and third floor of the building.

The atrium provides a great counterbalance to the east façade. Though they share many windows, including 3 two-story high arched windows, the designs are dramatically different. The exterior embodied a traditional Georgian revival, relying heavily elements of symmetry and balance. Materials used on the façade include brick and concrete, and the whole exterior was designed to look as an enhanced version of the buildings that have been on campus for decades.

The atrium, on the other hand, is a very modern design. The main shape of the space is an ellipse, which is not frequently used in traditional design. The walls are curved in the ellipse shape for all three stories, and the wood ceiling is offset from the walls about 2 feet, but retains the same shape. More noticeable is the difference in symmetry. While the basic shape of the room is symmetrical, many other elements were added to break up the sense of evenness. The balconies (themselves an uneven shape) are only on the south end of the atrium, while the 3-story open staircase dominates the north side of the shape. The first floor is divided into two areas. The seating area has a brown carpet as its floor covering, while the circulation area is a grey terrazzo. There is a clear transition between the two areas, but the division was purposely uneven (the seating area is much bigger).

Materials used here include a lot of dark wood, painted metal, and a translucent metal/frosted glass mesh that is used on the railings. A counter is provided for the café at the back end of the space. Other mobile furnishings will include couches, armchairs, and coffee tables.

Plans:

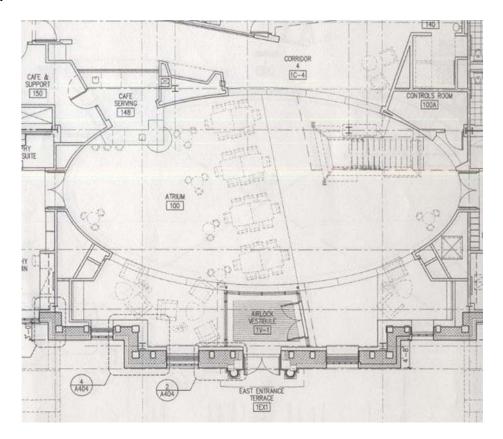


Figure 3.01 First Floor Plan - Atrium

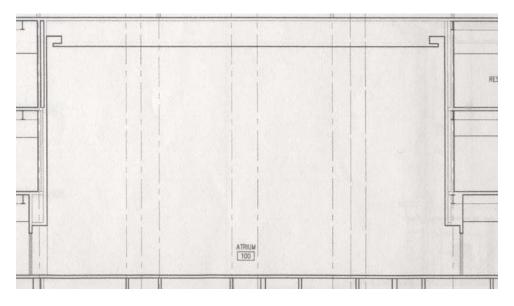


Figure 3.02 East to West Section - Atrium

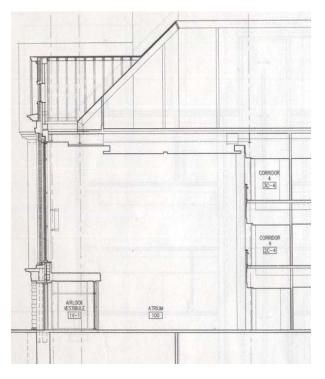


Figure 3.03 North to South Section - Atrium

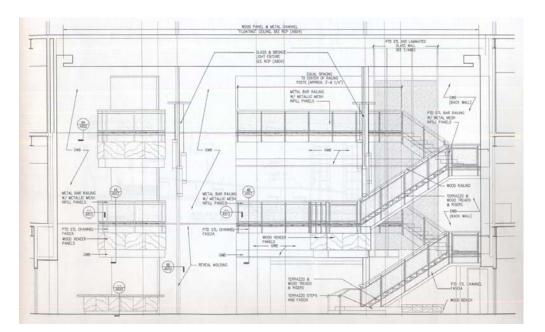


Figure 3.04 West Elevation – Atrium

Surface Characteristics:

Surface	<u>Material</u>	<u>Color</u>	Reflectance	Transmittance	<u>Finish</u>
Flat Ceiling	gypsum board	white	70%	-	matte
Acoustical Ceiling	wood slat panel	brown	15%	-	matte
Counter	bluestone	grey	15%	-	matte
Floor - Sitting	Carpet	dark grey	20%	-	matte
Floor - Circulation	terrazzo	light grey	45%	-	semi- specular
Steps	terrazzo	grey	35%	-	semi- specular
Main Walls	gypsum board	white	70%	-	matte
Benches	Wood	brown	15%	-	semi- specular
Balcony Panels	wood veneer panels	brown	15%	-	semi- specular
Decorative Wall	laminated glass		5%	30%	specular
Railings	ailings Wood		15%	-	semi- specular
Rail Supports	Steel	dark grey	20%	-	matte
Rail Sides	translucent glass	clear	10%	40%	specular
Vestibule Ceiling	Wood	brown	15%	-	semi- specular
Vestibule Trim	Wood		15%	-	semi- specular

Table 3.01	Surface	Characteristics - Atrium
10000 0101	Surguee	

Daylight Elements:

<u>Label</u>	Quantity	<u>Window</u> <u>Type</u>	<u>Mullion</u> Pattern	<u>Max</u> <u>Height</u>	<u>Max</u> <u>Width</u>	<u>Finish</u>	<u>Transmittance</u>	<u>Reflectance</u>
A1	6	Rectangular	3X5	7'-10"	3'-8"	Clear	80%	5%
С	2	Rectangular	5X5	7'-10"	5'-4"	Clear	80%	5%
Н	3	Arched Radius	7X15 + arch	25'-11"	7'-0"	Clear	80%	5%

Table 3.02 Daylight Elements - Atrium

Illuminance Requirements:

IESNA Reference: Hotels – Lobby – General Lighting (closest equivalent)

Horizontal Illuminance: 10 fc

Analysis: During the day, the daylighting should provide more than this by itself. At night, there are going to be task locations that require 30 fc (particularly the café cashier station and the work areas).

Design Criteria and Goals:

Most Important:

Appearance of Space and Luminaires:

• This space is the first that nearly every person entering the building will see, and this includes guests of the university. It is important that this space appears to be impressively aesthetically and also relaxing. High quality finishes were used here, so equally high-quality luminaires with pleasing aesthetics should be used.

Daylight Integration and Control:

• There is a very large amount of window area on the east wall of the space, and these have the potential to bring enough light into the space for all functions. The glass area is so large, however, that it is probable that too much light is going to enter the space, and good control of this light is critical.

Modeling of Faces and Objects:

• This is a requirement for the café area. Adequate light on faces, food, and menus is needed in order to conduct business. Also, way-finding is a critical task in this space, and being able to pick up on visual cues as to where to go requires a great deal of light on these objects.

Points of Interest:

• The open stairs and balconies are dominant elements of the space, so highlighting these areas would probably be a good idea. I'd also like to emphasize the work areas (the seating areas with tables and chairs) with more light that the general circulation areas.

Also Important:

Direct Glare:

• This relates more to the daylight entering the space. If not shielded properly, it could become impossible to do work in some areas of the spaces during certain daytime hours.

Light Patterns:

• In order to create a relaxing atmosphere, patterns of light can create bits of visual interest and help the space appear more natural.

Source/Task/Eye Geometry

• One of the tasks in this space will be casual reading. If the reading material is particularly glossy, it's going to be important to look at how the daylight is going to reflect off of the pages.

Surface Characteristics:

• The wood ceiling has some gloss to it, so a primarily indirect system would not be very effective here. The terrazzo flooring also is somewhat specular, so any high-intensity beams are going to be reflected strongly off of the floor, which could create some glare.

System Control and Flexibility:

• Daylight sensing controls may be important, as is adapting the system to both day and nighttime use. Different scenes might be good for receptions and regular work, but it's not crucial.

Daylight Study:

In order to determine whether electric light would be required during daytime hours, I performed a daylight study using AGI. The goal is to have at least 15 footcandles throughout the space at all times during the day.

Parameters:

Location: Lancaster, PA Latitude: 40.07^o N Longitude: 76.47^o N Direction Building Faces: 18^o North of East

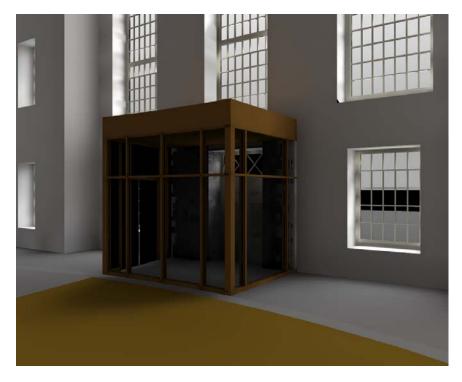


Figure 3.05 Rendering of Atrium – March 21st, Overcast Sky, 10:00 AM

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Figure 3.06 Rendering of Atrium – March 21st, Clear Sky, 8:30 AM

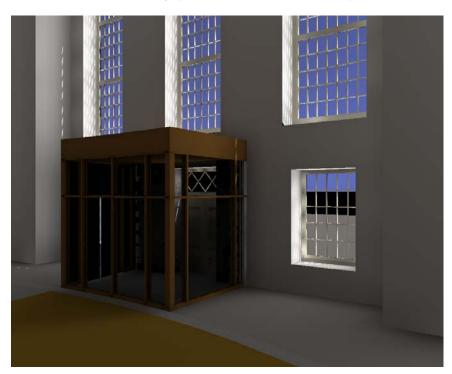


Figure 3.07 Rendering of Atrium – March 21st, Clear Sky, 12:00 PM

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

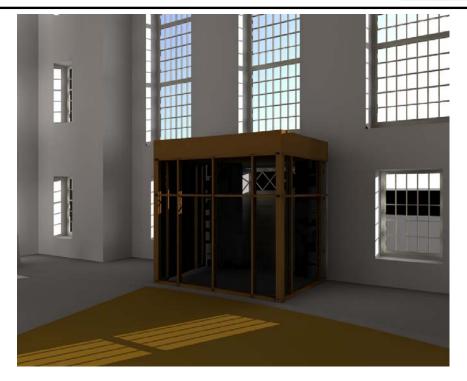


Figure 3.08 Rendering of Atrium – December 22nd, Clear Sky, 8:30 AM

Figure 3.09 Rendering of Atrium – December 22nd, Clear Sky, 12:00 PM

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Figure 3.10 Rendering of Atrium – June 22nd, Clear Sky, 8:30 AM

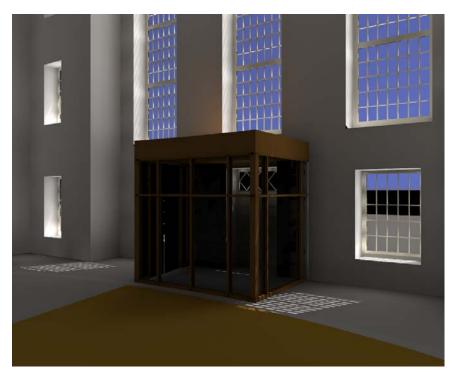


Figure 3.11 Rendering of Atrium – June 22nd, Clear Sky, 12:00 PM

Daylight Study Results:

Manth	T:	C1	Foot	tcandles
Month	Time	Sky	Тур.	Max.
March	8:30 AM	Clear	170	3179
March	10:00 AM	Clear	95	4220
March	10:00 AM	Overcast	23	39
March	12:00 PM	Clear	44	67
March	2:00 PM	Clear	27	35
March	4:00 PM	Clear	16	23
June	7:00 AM	Clear	98	1107
June	8:30 AM	Clear	130	3314
June	10:00 AM	Clear	100	4715
June	12:00 PM	Clear	62	99
June	2:00 PM	Clear	35	48
June	4:00 PM	Clear	25	31
December	8:30 AM	Clear	89	677
December	10:00 AM	Clear	84	1753
December	12:00 PM	Clear	38	53
December	2:00 PM	Clear	19	26
December	4:00 PM	Clear	10	13

Table 3.03 Compiled Data from Atrium Daylight Study

As can be seen from the results above, there is more than enough natural light in the space during daytime hours. The height of the windows allows for daylight penetration all the way across the space. The values above are typical for the vast majority of the space. Therefore, I am proposed that the majority of any electric light for the space be turned off from 1 hour after sunrise until 1 hour before sunset. The café service area will require more light over the counters, and the stairs may require some additional light, so any lighting over these areas must remain on. In addition, the planned decorative pendant and other luminaires with decorative elements will likely be on for aesthetic reasons, but both of these are not going to use a tremendous amount of energy.

Luminaire Schedule:

<u>Label</u>	<u>Quantity</u>	Description	<u>Number</u> of Lamps / Linear Feet	<u>Lamp</u> <u>Type</u>	<u>Voltage</u>
SS1	34	Recessed round downlight	1	32W TRT CFL	277
SS2	14	Recessed square downlight	1	32W TRT CFL	277
SS3	14	Luminous wall sconce with brass trim	2'	Т5	277
SS4	1	Decorative pendant with 4 luminous glass discs and brass trim	4	42W TRT CFL	277
SS5	1	Oval-shaped low profile linear wallwasher	6'	T5	277

Table 3.04Compressed Luminaire Schedule for AtriumFor Full Luminaire Schedule and Details, Please Refer to Appendix A

SS2

SS1

SS3

SS4

SS5

Ballast Schedule:

<u>Label</u>	<u>Ballast Type</u>	<u>Power</u> <u>Factor</u>	<u>Ballast</u> <u>Factor</u>	<u>Ballast</u> <u>Watts</u>
SS1	Electronic Rapid Start	0.98	0.98	36
SS2	Electronic Rapid Start	0.98	0.98	36
SS3	Electronic Instant Start	0.98	1.05	19
SS4	Electronic Rapid Start	0.98	0.98	184
SS5	Electronic Prog. Start	0.98	1.02	48

Table 3.05Compressed Ballast Schedule for AtriumFor Full Ballast Details, Please Refer to Appendix A, p.145

Light Loss Factors:

Label	Maint. Cat.	Degree of Dirt	Cleaning Schedule	Distrib. Cat.	Ballast Factor	Lumin. Dirt Deprec.	Lamp Lumen Deprec.	Room Surface Dirt Deprec.	Total LLF
SS1	III	Very Clean	12 mths	Direct	0.980	0.924	0.841	0.965	0.735
SS2	III	Very Clean	12 mths	Direct	0.980	0.924	0.841	0.965	0.735
SS3	II	Very Clean	12 mths	Dir- Ind.	1.050	0.968	0.919	0.930	0.869
SS4	VI	Very Clean	12 mths	Dir- Ind.	0.980	0.804	0.841	1.000	0.663
SS5	III	Very Clean	12 mths	Direct	1.020	0.924	0.919	0.960	0.831

 Table 3.06
 Light Loss Factors for Exterior and Facade

Controls:

All of the lighting in the space (with the exception of the café lighting and the vestibule lighting) will be controlled off of a time clock controller. There will be two controllers. The first would be for all of the recessed lighting in the space (except as noted above). The controller will be programmed to turn those luminaires on at one hour before sunset, and turn them off at one hour after sunrise. Combined with the ample natural light entering the space during the day, this ensures that there will be adequate lighting in the space 24 hours a day without switching. The second controller will be for the decorative pendants and the sconces. That controller will be programmed to turn those luminaires on at 6:00 AM, and turn them off at 10:00 PM. This will allow the more decorative fixtures to be on during daytime hours, and to conserve energy by turning off at night. The 10:00 PM switching ensured that the lighting is not switched off during any university events that would be held here. A cutsheet of the proposed time clock controller is in Appendix A, page 222. The café lighting will be switched locally. The vestibule lighting will be on at all times for security reasons, so no switching is required. These controls allow the space to meet the automatic shut-off standard of ASHRAE 90.1-2004.

Lighting Plan – First Floor

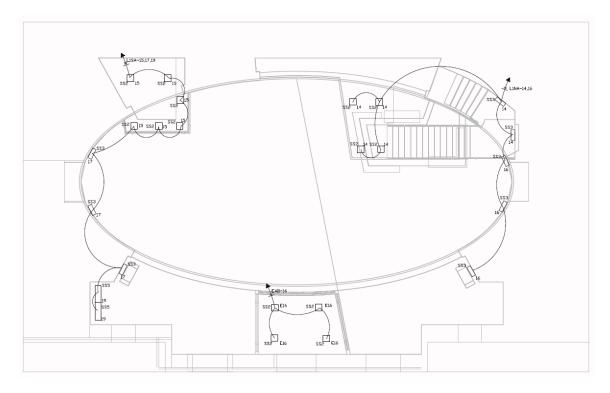


Figure 3.12 Atrium Lighting Plan – First Floor

Label	Number	Mounting Type	Mounting Height	Cantilever / Pendant Length	Circuit
SS2	6	Recessed	11'-6"	-	L1SA-15
SS2	4	Recessed	11'-0"	-	E4B-16
SS2	4	Recessed	11'-6"	-	L1NA-14
SS3	2	Surface	5'-0"	-	L1SA-17
SS3	1	Surface	7'-0"	-	L1SA-17
SS3	2	Surface	15'-0"	-	L1NA-14
SS3	2	Surface	5'-0"	-	L1NA-16
SS3	1	Surface	7'-0"	-	L1NA-16
SS5	1	Cantilever	8'-6"	1'-3"	L1SA-19

 Table 3.07
 Mounting Details for Atrium – First Floor

Lighting Plan – Second Floor

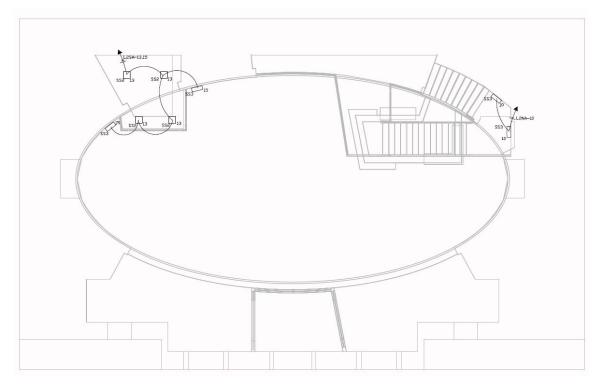


Figure 3.13 Atrium Lighting Plan – Second Floor

Label	Number	Mounting Type	Mounting Height	Cantilever / Pendant Length	Circuit
SS2	4	Recessed	25'-6"	-	L2SA-13
SS3	2	Surface	29'-0"	-	L2NA-10
SS3	2	Surface	20'-0"	-	L2SA-15

 Table 3.08
 Mounting Details for Atrium – Second Floor

Lighting Plan – Third Floor

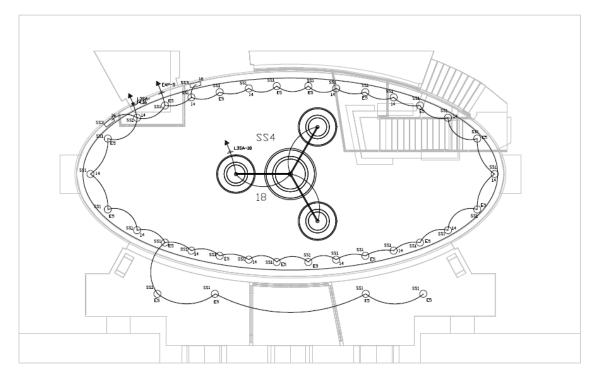


Figure 3.14 Atrium Lighting Plan – Third Floor

Label	Number	Mounting Type	Mounting Height	Cantilever / Pendant Length	Circuit
SS1	8	Recessed	38'-0"	-	L3SA-14
SS1	8	Recessed	38'-0"	-	L3SA-16
SS1	7	Recessed	38'-0"	-	E4P-1
SS1	7	Recessed	38'-0"	-	E4P-3
SS1	6	Recessed	38'-0"	-	E4P-5
SS3	2	Surface	34'-0"	-	L3SA-18
SS4	1	Pendant	35'-0"	3'-0"	L3SA-20

 Table 3.09
 Mounting Details for Atrium – Third Floor

Details:

I elected to design a custom pendant for the center of the space, in the hopes of creating a focal point for the atrium and enhancing the other modern design elements. I designed the pendant with the theme of "three merging into one", to reflect the original purpose of the building (bringing together the departments of psychology, philosophy, and biology in one facility). I was inspired by the concept of luminous discs of light that I saw in a couple of other pendants. I liked the use of different types of glass (clear, frosted, diffuse) that were used of the same disc, since it added both glow and interest that could not be produced with only one type of glass. The custom pendant here needed to be much larger, and it needed to match the atrium and building as a whole more. The trim and supporting elements, therefore, will be brass. Brass is considered a theme material for the building, and many of the places where metal trim was used, it was done in brass.

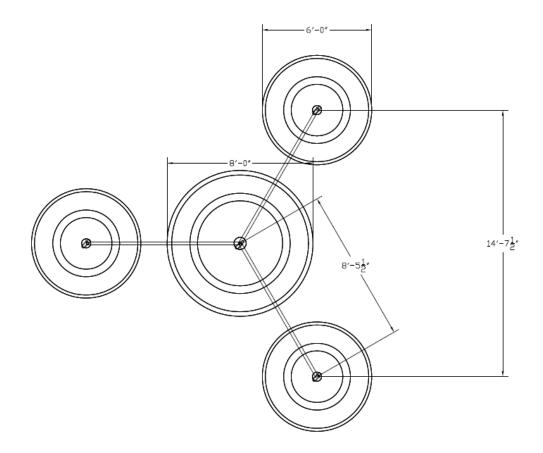


Figure 3.15 Custom Pendant for Atrium (Type SS4) – Plan

04/09/2008

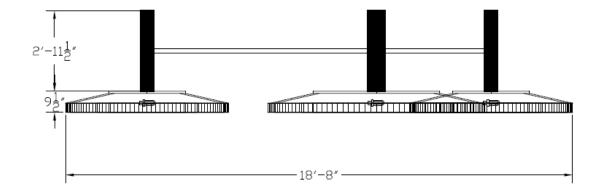


Figure 3.16 Custom Pendant for Atrium (Type SS4) – Elevation

Figure 3.17 Custom Pendant for Atrium (Type SS4) – Rendered Image

Calculations and Performance:

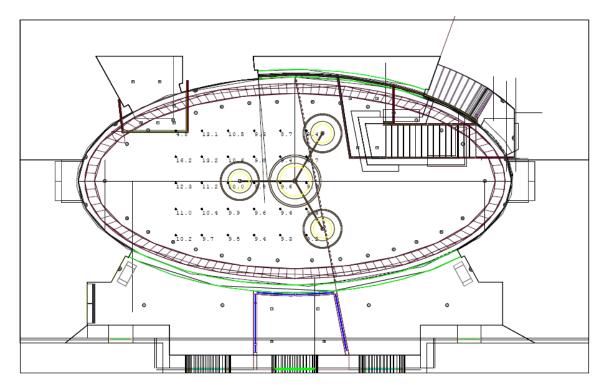


Figure 3.18 Atrium – Plan of AGI Model with Calculation Grid

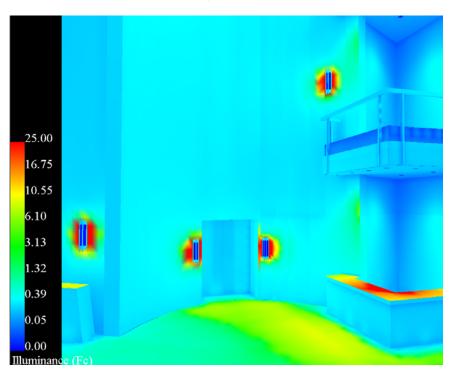


Figure 3.19 Pseudocolor Rendering of Atrium – Facing South

Rendered Images:

Figure 3.20 Color Rendering of Atrium – Facing North

Figure 3.21 Color Rendering of Atrium – From Main Entry

Figure 3.22 Color Rendering of Atrium – From Balcony

Figure 3.23 Color Rendering of Atrium – Ceiling and Custom Pendant

Power Density Calculations:

Because of the height, dimensions, and purpose of this space, this is by far the most difficult space to meet the power allowance in. I originally designed the space using ceramic metal halide downlights because of their high efficacy, a color that best fit the modern theme of the space, and long lamp life. The light levels were more than adequate, and would have allowed for some half-on, half-off scenarios. However, the energy consumption was nearly 1.5 Watts per square foot. Because ASHRAE 90.1 only considers connecting load, not the length of time the luminaires will be on, the 70W ceramic metal halide lamps had to be switched. I sacrificed the ability to get up to 30 footcandles at the ground. This would have been nice for some functions, but overall isn't a requirement for the atrium (10 footcandles will suffice). By switching to 32W compact fluorescent triple tube lamps, I was able to get the energy consumption low enough here to make use of the Space-by-Space procedure. Since these lamp meet illuminance goals and energy requirements, and since the lamp life is almost comparable, I feel that the overall design has not been downgraded as a result of having to design to ASHRAE 90.1-2004.

<u>Space</u>	Matching ASHRAE Category	Power Allowance	Length (ft)	<u>Area</u> (<u>ft²)</u>	Watts Allowed
Atrium	Atrium - First Three Floors	0.6 W/ft ²	-	2672	1603.2

Total Allowed 1603.2 W

1776 W

<u>Type</u>	Quantity	<u>Input Watts / Luminaire</u>	<u> Total Watts / Type</u>
SS1	34	36	1224
SS2	14	36	504
SS5	1	48	48

 Table 3.10
 Power Allowance for Atrium – Functional Lighting

 Table 3.11
 Power Consumed by Atrium – Functional Lighting

Total Watts Consumed

<u>Space</u>	Matching ASHRAE Category	<u>Power</u> <u>Allowance</u>	<u>Length</u> <u>(ft)</u>	<u>Area</u> (ft ²)	Watts Allowed
Atrium	Decorative Lighting	1.0 W/ft^2	-	2672	2672

Total Allowed 2672 W

<u>Type</u>	Quantity	Input Watts / Luminaire	<u>Total Watts / Type</u>
SS3	14	19	266
SS4	1	184	184
		Total Watts Consumed	450 W

Table 3.12	<i>Power Allowance for Atrium – Decorative Lighting</i>

 Table 3.13
 Power Consumed by Atrium – Decorative Lighting

Based on the charts above, it would appear that I have exceeded my energy budget. However, since the Space-by-Space method allows for the trading of allowable energy between spaces, I will have no difficulty meeting the standards set forth in ASHRAE 90.1-2004. I will discuss this further in the full conclusion.

Conclusions:

I like what the custom pendant brings to the space. The scale is good: large enough to be a focal point, but not so much that it covers the entire wood ceiling. It also is noticeable, but not intrusive. People can appreciate the entire space from the balconies without being blocked by the pendant. The sconces add some attention to the doors, stairs, and balconies, and the brass in them matches well with the theme materials for the space. The downlights from the wood ceiling help to emphasize the shape of the ceiling and the atrium as a whole, but still provide a relatively even distribution of light (which can be expected from a 40-foot mounting height). Despite all of this, I think it is the large windows that really allow this space to function as well as it does. The amount of daylight that penetrates the space allows most of the electric lighting to be completely off during the day, and this allows the space to have essentially two different lighting schemes for the price of one. The time clock settings allow the atrium to be alive and dynamic during the day, simple and elegant in the evening, and functional and secure at night.

Ecology Teaching Lab

Overview:

The Ecology Teaching Lab is one of fifteen throughout the second and third floors. As a result, the lighting design of this space would likely carry over to the design of the other laboratories. This laboratory is located on the second floor, immediately adjacent to (but not immediately accessible from) the atrium. The main function of this laboratory is for teaching to first and second-year students. That said, all of the labs are available to graduate students for 24-hour use. For this space, it will be important to design to both a full class of 24 students and the lone graduate student working late at night.

Major furnishings include lab stations with a workplane at 3' AFF, a podium workstation at the front of the room, sink cabinets, storage shelving, and other safety equipment. A chalkboard and a retractable projection screen will also be furnished.

Plans:

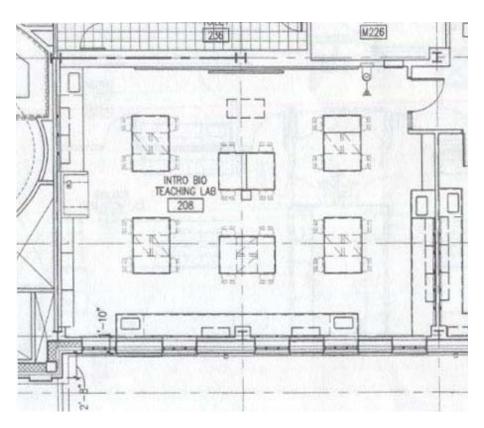


Figure 4.01 Second Floor Plan – Ecology Teaching Lab

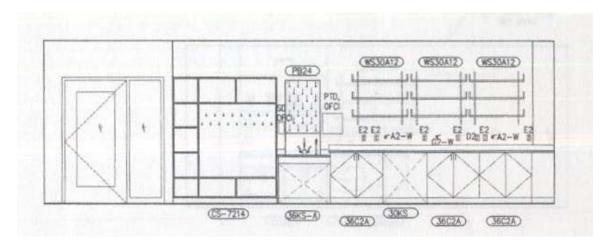


Figure 4.02 North Elevation – Ecology Teaching Lab

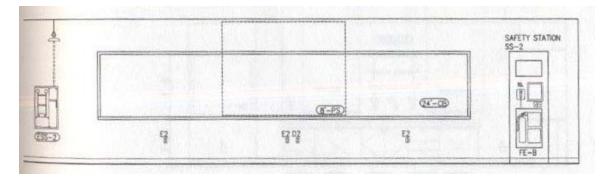


Figure 4.03 West Elevation – Ecology Teaching Lab

Surface Characteristics:

<u>Surface</u>	<u>Material</u>	<u>Color</u>	Reflectance	<u>Finish</u>
Ceiling	acoustical ceiling tile	white	80%	matte
Walls	gypsum board	white	70%	matte
Floor	vinyl composition tile	white	55%	semi- specular
Floor	vinyl composition tile	blue	15%	semi- specular
Cabinets	wood	tan	30%	semi- specular
Worksurface	epoxy resin	black	10%	semi- specular

 Table 4.01
 Surface Characteristics – Ecology Lab

Daylight Elements:

<u>Label</u>	<u>Quantity</u>	<u>Window</u> <u>Type</u>	<u>Mullion</u> <u>Pattern</u>	<u>Max</u> <u>Height</u>	<u>Max</u> <u>Width</u>	<u>Finish</u>	<u>Transmittance</u>	<u>Reflectance</u>
A1	5	Rectangular	3X5	7'-10"	3'-8"	Clear	80%	5%

 Table 4.02
 Daylight Elements – Ecology Lab

Illuminance Requirements:

IESNA Reference: Classrooms – Science Laboratories

Horizontal Illuminance: 50 fc Vertical Illuminance: 30 fc

Analysis: Appropriate for this environment, but would like system to be capable of 75-80 fc for some experiments

Design Criteria and Goals:

Most Important:

Color Appearance and Color Contrast:

• The experiments being performed in this laboratory require the experimenter/student to be able to distinguish subtle differences in color, as well as to be able to correctly decipher color to begin with. A high CRI source would be required.

Light Distribution on Task Plane:

• In order to have a reasonably controlled environment for all experiments, it is best to have each lab station as identical to the next as possible. This includes having approximately the same illuminance and luminance levels. Also, in order to make it equally possible to learn from any place in the room, it would be practical to make the workstations as uniformly lit as possible. It is acceptable to have lower light levels over the egress areas.

Luminances of Room Surfaces:

• The chalkboard is a major task in this room, and it is imperative that the chalkboard is lit well enough to be seen.

Modeling of Faces and Objects:

• This is critical if the professor is planning on performing demonstrations in front of the class, which based on the layout of the lab, appears to be the case. The students need to be able to see distinct features of objects both at their station and the professor's. Good facial rendering is also a critical part of the learning process, as being able to see what the professor is saying both connects the professor to his/her audience and helps reinforce the information they are hearing.

Points of Interest:

• Major tasks to focus on are the chalkboard and the individual workstations. A task lighting system might be a good way to emphasize the importance of these areas.

Also Important:

Source/Task/Eye Geometry:

• Objects used during labs may be specular or glossy. If a direct lighting system is used, it is important to consider where a person is likely to sit/stand and where they are likely to view glossy objects.

Surface Characteristics:

• The major task surfaces (the workstation and the chalkboard) are very low reflectance. Generally, more light than normally required will be needed to work well in this space.

Special Considerations (VDT/Projection Screen):

• The projection screen will be over the chalkboard. Any lighting specifically for the chalkboard must be controlled separately from the rest of the space, so that people may still see to take notes during presentations. Any ambient light should be examined to make sure there isn't a significant amount striking the projection screen.

Illuminance (Horizontal and Vertical):

• Good illuminance is required to learn and to perform detailed experimentation. Appropriate horizontal illuminance is needed on the workstations, and appropriate vertical illuminance is required on the chalkboard.

Luminaire Schedule:

<u>Label</u>	<u>Quantity</u>	Description	<u>Number</u> of Lamps	<u>Lamp</u> <u>Type</u>	<u>Voltage</u>
RR1	23	Recessed direct- indirect LTT luminaire with louvers and white reflector	1	40W LTT	277
RR2	9	Recessed T8 fluorescent downlight with parabolic louver	1	32W T8	277
RR3	6	Surface mounted T8 chalkboard light	1	32W T8	277

Table 4.03 Compressed Luminaire Schedule for Ecology Teaching LabFor Full Luminaire Schedule and Details, Please Refer to Appendix A

Final Report

Ballast Schedule:

<u>Label</u>	Ballast/Driver Type	<u>Power</u> <u>Factor</u>	<u>Ballast</u> <u>Factor</u>	<u>Ballast</u> <u>Watts</u>
RR1	Electronic Ballast	0.90	1.02	40
RR2	Electronic Ballast	0.98	0.90	34
RR3	Electronic Ballast	0.98	0.90	34

Table 4.04	Compressed Ballast Schedule for Ecology Teaching Lab
For	r Full Ballast Details, Please Refer to Appendix A

Light Loss Factors:

Label	Maint. Cat.	Degree of Dirt	Cleaning Schedule	Distrib. Cat.	Ballast Factor	Lumin. Dirt Deprec.	Lamp Lumen Deprec.	Room Surface Dirt Deprec.	Total LLF
RR1	II	Very Clean	12 mths	Direct	1.020	0.968	0.908	0.973	0.872
RR2	III	Very Clean	12 mths	Direct	0.900	0.924	0.950	0.973	0.769
RR3	III	Very Clean	12 mths	Direct	0.900	0.924	0.950	0.973	0.769

 Table 4.05
 Light Loss Factors for Ecology Teaching Lab

Lighting Plan:

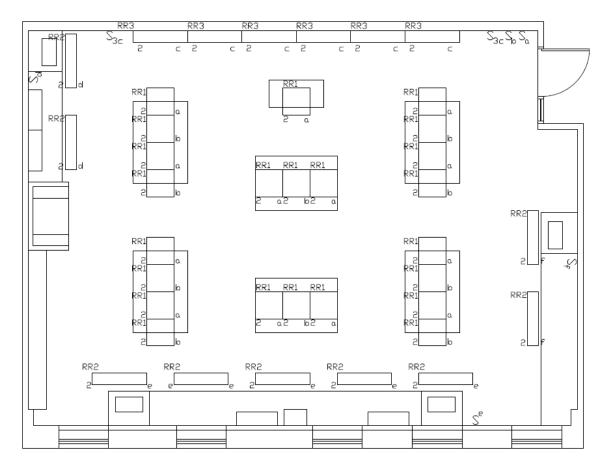


Figure 4.04 Lighting Plan – Ecology Teaching Lab

Controls:

For this layout, I explored two different switching options. From the beginning of the design process, I designed that I would like bi-level switching capabilities for the luminaires over the lab workstations. I also wanted localized switching for the luminaires over the side counters.

The difference between the two options is the location(s) where the second level of the bi-level switching occurs. In both systems, the first level is at the front entry, and allows for a light level of 35-40 footcandles to strike the desks.

In the first option, the second level of switching also occurs at the front entry of the room, and switches the second set of luminaires over all six lab workstations.

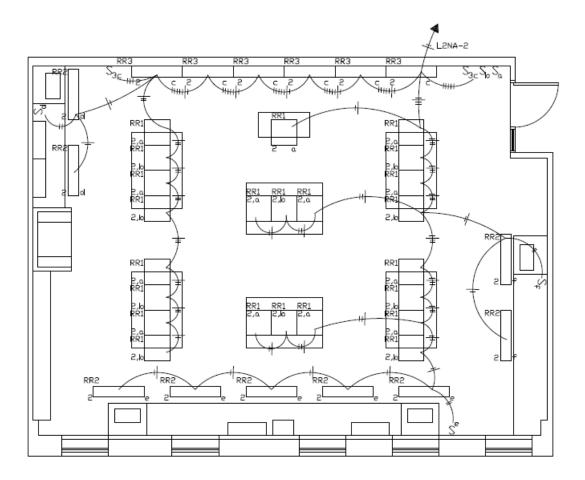
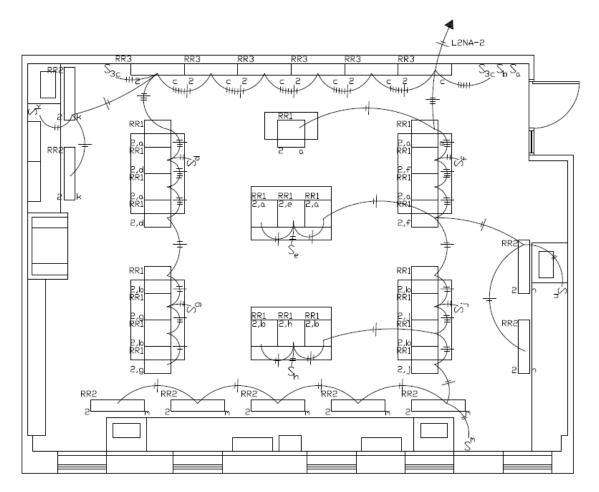



Figure 4.05 Switching Option #1 – Ecology Teaching Lab

The second option would allow the second light level to be switched on separately for each individual workstation. The switch would be located underneath the worksurface of the station.

Figure 4.06 Switching Option #2 – Ecology Teaching Lab

While the second option would offer the most potential for energy savings, and provides the most individualized control, it has many drawbacks. Since putting a raceway of some sort through each workstation is not a viable option, wires would have to be run from the home run location through the floor to each workstation switch, then back to a wall to go up to the ceilings and the luminaires. Besides being a lot more complicated, this adds a lot more wire to the project, and therefore significantly increases the cost. For these reasons, I am recommending the first control system. With time clocks for the entire building, this space meets the requirements for automatic shut-off.

Calculations and Performance:

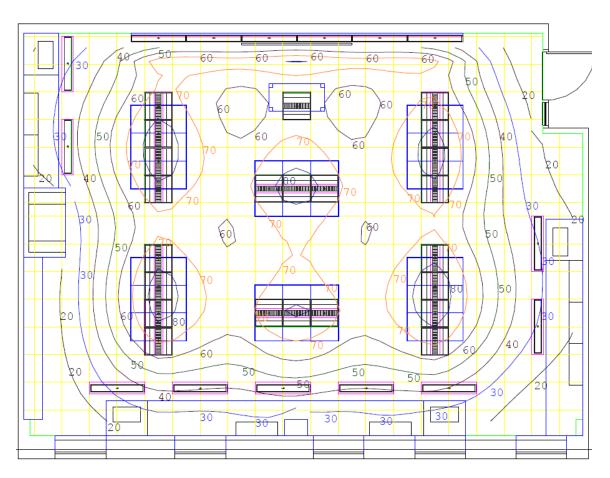


Figure 4.07 Ecology Teaching Lab – Plan of AGI Model with Footcandle Isolines

•7	5.2	•76.4	•74.9	•74.0	• 74.6	• 76.4	7 6.3	•74.5	* 73.8	• 74.8	• 76.0	* 73.8
•2·	7.0	28.4	26.7	25.7	26.5	28.5	28.5	26.4	25.5	26.5	2 7.6	25.4
•23	3.2	•24.0	2 2.9	•22.0	2 2.8	2 4.5	24.5	2 2.6	2 1.8	2 2.5	•23.2	2 1.3
•2:	2.3	23.2	•22.7	•22.2	2 2.6	2 3.9	23.8	•22.4	2 1.9	2 2.3	•22.4	2 0.7

Figure 4.08 Ecology Teaching Lab – Elevation of Chalkboard with Calculation Grid

 42.0 70.7 74.5 47.8
45.3 60.1 61.9 48.7
51.9 59.2 60.0 53.6
59.9 63.7 64.0 60.7
 64.3 66.3 66.4 64.7

Figure 4.09 Ecology Teaching Lab – Elevation of Lecture Area with Calculation Grid

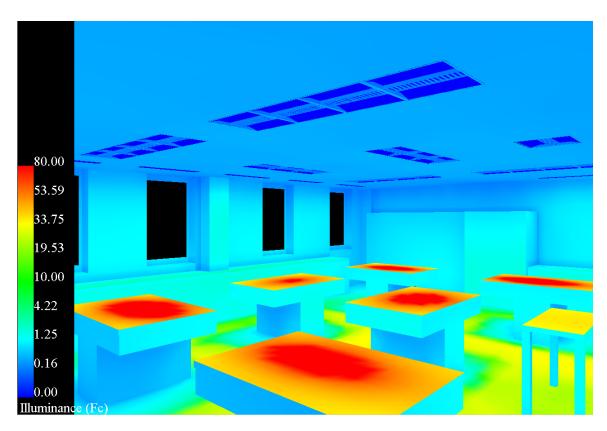


Figure 4.10 Pseudocolor Rendering of Ecology Teaching Lab – From Entrance

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Rendered Images:

Figure 4.11 Color Rendering of Ecology Teaching Lab – From Entrance

Figure 4.12 Color Rendering of Ecology Teaching Lab – From Back Workstation

Power Density Calculations:

<u>Space</u>	Matching ASHRAE Category	<u>Power</u> <u>Allowance</u>	<u>Length</u> <u>(ft)</u>	<u>Area</u> (ft ²)	Watts Allowed
Ecology Lab	Laboratories	1.4 W/ft^2	-	1160	1624

Total Allowed 1624 W

 Table 4.06
 Power Allowance for Ecology Lab

<u>Type</u>	<u>Quantity</u>	<u>Input Watts / Luminaire</u>	<u> Total Watts / Type</u>
RR1	23	40	920
RR2	9	34	306
RR3	6	34	204

Total Watts Consumed	1430 W

 Table 4.07
 Power Consumed by Ecology Lab

Based on the above calculation, the space meets the energy requirements set forth in ASHRAE 90.1 – 2004.

Conclusions:

I feel the task-oriented approach was a very strong one for this space. First, it draws a lot of attention to the major task areas in the room: the workstations, the lecturer, and the chalkboard. This focus also has another key advantage. Since only the workstations were designed for 50 footcandles, rather than the entire space, this allowed for significant energy saving over a traditional, 2X4 or 1X4 recessed layout throughout. I also feel the switching system will be a good choice for this space. It allows the occupants of the space to use only the light they need, while allowing them enough light for any of their needs in the space. Although the layout with individualized workstation control would have been an excellent choice for function and energy savings, the room isn't properly equipped with raceways and columns, and with the much higher cost in wiring, I can't justify this option. I think I accomplished my goal of creating a layout that can be replicated throughout the other labs in the building, with similar success and energy savings.

Bonchek Lecture Hall

Overview:

This lecture hall was designed as a presentation space for guest lecturers of the departments housed in this building and for Franklin & Marshall College as a whole. Although perhaps not its original intent, the space is also now commonly used for regularly scheduled classes. Access to this space is from the atrium via a corridor width and a vestibule.

At between 9' and 13' above finished floor throughout the space, the lecture hall is not as voluminous as many lecture halls with similar footprints. There are 2 separate 1-foot step-down areas to allow a better view of the speaker and to increase the sense of spaciousness. The required handicapped ramp is at the left (south) end of the space. There is enough seating in this lecture hall for 100 attendees, plus a small number of overflow seats.

The general palette for finishes here was high-end, but simple and clean. The color in the space is restricted to the wood and to the view from the large arched windows (when the black-out shades aren't down). Aside from that, the materials remain in the white, black, and gray tones. Build-in elements include wood-trimmed laminate tables and chairs for audience members. Three projection screens (which are retractable but frequently in use) are also built-in.

Plans:

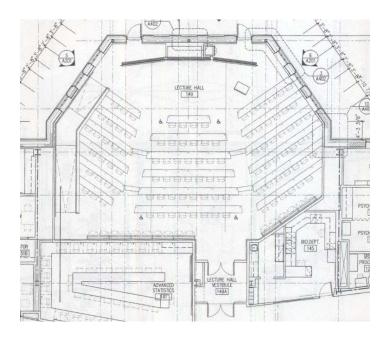


Figure 5.01 First Floor Plan – Lecture Hall

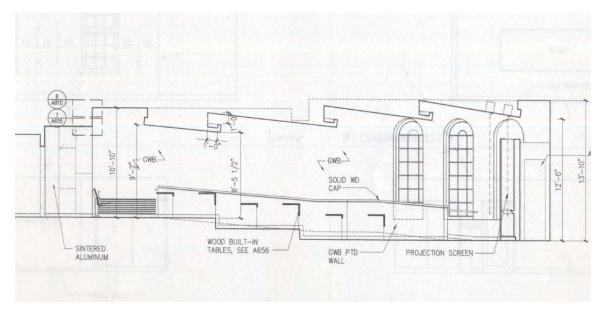
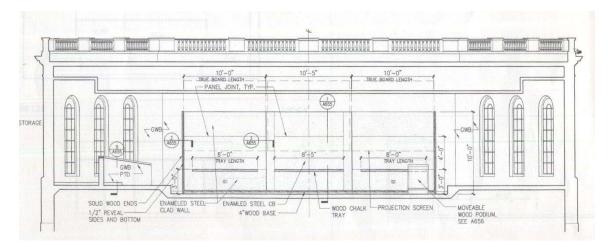



Figure 5.02 North to South Section – Lecture Hall

Figure 5.03 West Elevation – Lecture Hall

Surface Characteristics:

Surface	<u>Material</u>	<u>Color</u>	<u>Reflectance</u>	<u>Finish</u>
Side Walls	gypsum board	white	70%	matte
Back Walls	sintered aluminum panels (AWT)	silver	40%	semi-specular
Screen Walls	enamel steel clad	dark grey	10%	matte
Floor	carpet	grey	20%	matte
Desks - Trim	light wood	tan	30%	semi-specular
Desks - Top	plastic laminate	light grey	50%	matte
Railing - Top	wood	tan	30%	semi-specular
Railing - Sides	gypsum board	white	70%	matte
Ceiling - Seating	gypsum board	white	70%	matte
Ceiling - Edge	acoustical plaster	white	79%	semi-gloss

 Table 5.01
 Surface Characteristics – Lecture Hall

Daylight Elements:

<u>Label</u>	<u>Quantity</u>	<u>Window</u> <u>Type</u>	<u>Mullion</u> <u>Pattern</u>	<u>Max</u> <u>Height</u>	<u>Max</u> <u>Width</u>	<u>Finish</u>	<u>Transmittance</u>	<u>Reflectance</u>
J1	6	Arched Radius	3X6 + arch	9'-4"	3'-8"	Clear	80%	5%

<i>Table 5.02</i>	Daylight Elements – Lecture Hall
-------------------	----------------------------------

Illuminance Requirements:

IESNA Reference: Lecture Halls (audience/demonstration), #2 pencil/photocopies

Horizontal Illuminance: 100 fc (demonstration), 30 fc (audience) Vertical Illuminance: 50 fc

Analysis: Vertical illuminance is appropriate, but horizontal illuminance on the demo area is way too high here (the slope of the space is not as great as many lecture halls, and vertical illuminance becomes more critical). I will design the stage area for 70 fc.

Design Criteria and Goals:

Most Important:

Appearance of Space and Luminaires:

• Many of the guest lectures and presentations for the entire university will be taking place in this room. The space should look very professional, and the fixtures should be generally recessed or aesthetically clean.

Light Distribution on Task Plane:

• Every desk in the lecture hall should be equally lit, so that there is no place in the room where it is more difficult to learn from.

Modeling of Faces and Objects:

• In presentations and demonstrations, it is critical for audience members to be able to see the presenters and details of any objects they are using. It is also critical for the faces of the audience to be somewhat lit, so that the presenter can pick up visual cues that he/she is getting their point across, and can try other things if one method is not working.

Points of Interest:

• The two major focus areas in the space are the podium and the coves, and lighting should be used to effectively accentuate these areas.

Special Considerations (VDT/Projection Screen):

• Nearly all presentations in this space will be in PowerPoint / digital format, so the projection screen is a critical task plane. Because the presentations in this room are professional in nature, it is not acceptable to simply shut off all of the lights in the room when the projection screen is being used. A high quality design will put light on the audience while limiting the illuminance on the screen to less than 5 footcandles.

System Control and Flexibility:

• At least two different scenes would be great in this space; one to be used for presentations on the projection screen, and one to be used for before and after presentations that allows more light on the stage.

Also Important:

Color Appearance and Color Contrast:

• Any demonstrations that occur as part of presentation will require reasonably good color contrast.

Shadows:

• The lighting system cannot create any shadows over the projection screen, both because of the physical fixture and the visual effects caused by the lighting system.

Illuminance (Horizontal and Vertical):

• Good horizontal illuminance is required for note taking. Good vertical illuminance is required for reading off the vertical surfaces of the space (which may include a chalkboard or whiteboard)

Ceiling Redesign:

The original ceiling for the space was a linear cove system at varying heights. One of my major goals for the lighting design here is to evenly distribute light on the work surfaces throughout the lecture hall. Because the furniture layout does not match up well with the original ceiling design, using the original ceiling would make it difficult to achieve this goal. Additional reasons for the re-design include acoustical enhancement (which is discussed in the acoustical breadth) and the opportunity to make the space more visually interesting, which will be a combination of ceiling design and lighting design.

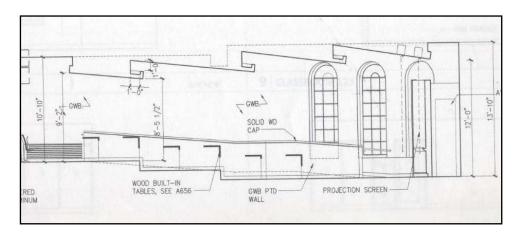


Figure 5.04 Section of Lecture Hall – Original Cove Ceiling

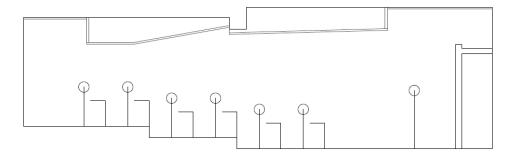


Figure 5.05 Section of Lecture Hall – Proposed Ceiling Reflectors

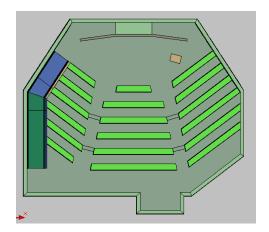


Figure 5.06 Lecture Hall Model – Plan View

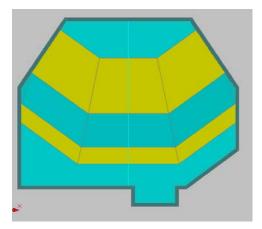


Figure 5.07 Lecture Hall Model – Plan View of Ceiling

Impact of New Ceiling Design on Structure:

One of the advantages of the original cove lighting systems was that it worked in very well with the structural framing for the space. The new design of the lecture hall ceiling has both a different shape (which by itself shouldn't be a huge issue) as well as lower ceiling heights in some critical areas. A key concern here was working around the bottom section of a Vierendell truss that goes across the middle of the space. Should the beam have to protrude into the space, it would interfere with the overall goals of the design (to enhance the acoustical efficiency of the space and to better match the geometry of the space and furnishing). The following diagram shows a section of the space with measurements to determine if this becomes an issue. As illustrated below, it appears that the new ceiling design will not affect the structural framing design, and vice versa.

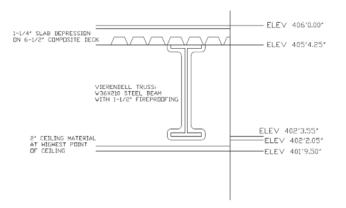
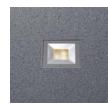


Figure 5.08 Lecture Hall – Simplified Section of Vierendell Truss with Measurements



Luminaire Schedule:

<u>Label</u>	<u>Quantity</u>	Description	<u>Number</u> of Lamps / Linear Feet	<u>Lamp</u> <u>Type</u>	<u>Voltage</u>
PP1	62	Recessed linear fluorescent downlight	4'	Т5	277
PP2	14	Recessed compact fluorescent wall washer	1	42W CFL TRT	277
PP3	24	Recessed compact fluorescent downlight	1	26W CFL TRT	277
PP4	33	Floor recessed LED uplight for ramp and stairs	1	LED	277
PP5	8	Luminous wall sconce with brass trim	2'	T5	277

Table 5.03 Compressed Luminaire Schedule for Lecture HallFor Full Luminaire Schedule and Details, Please Refer to Appendix A

PP4

PP5

Ballast Schedule:

<u>Label</u>	Ballast/Driver Type	<u>Power</u> <u>Factor</u>	<u>Ballast</u> <u>Factor</u>	<u>Ballast</u> <u>Watts</u>
PP1	Dimmable Electronic	0.98	1.00	29
PP2	Dimmable Electronic	0.99	1.00	47
PP3	Dimmable Electronic	0.98	1.05	31
PP4	24V LED Driver	1.00	-	4.2
PP5	Dimmable Electronic	0.98	1.05	19

Table 5.04 Compressed Ballast Schedule for Lecture HallFor Full Ballast Details, Please Refer to Appendix A

Light Loss Factors:

Label	Maint. Cat.	Degree of Dirt	Cleaning Schedule	Distrib. Cat.	Ballast Factor	Lumin. Dirt Deprec.	Lamp Lumen Deprec.	Room Surface Dirt Deprec.	Total LLF
PP1	III	Very Clean	12 mths	Direct	1.000	0.924	0.919	0.980	0.832
PP2	III	Very Clean	12 mths	Direct	1.000	0.924	0.841	0.980	0.762
PP3	III	Very Clean	12 mths	Direct	1.050	0.924	0.841	0.980	0.800
PP4	V	Very Clean	12 mths	Indirect	1.000	0.925	0.700	1.000	0.648
PP5	II	Very Clean	12 mths	Dir-Ind	1.050	0.968	0.919	0.930	0.869

Table 5.05	Light Loss Factors for Lecture Hall
------------	-------------------------------------

Lighting Plan:

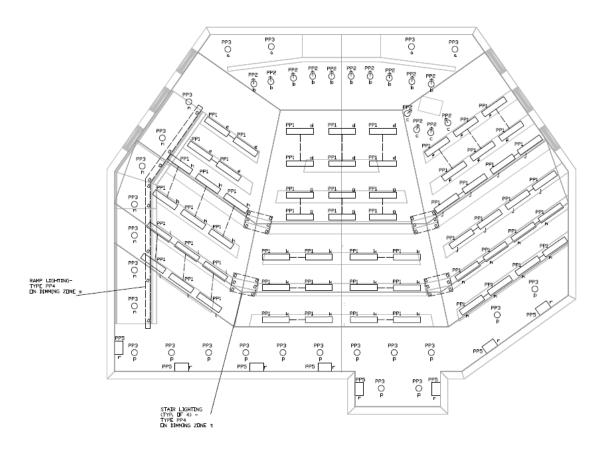


Figure 5.09 Lighting Plan – Lecture Hall

Controls:

Every luminaire in the lecture hall is connected to one of two dimming panels: one for normal power, and one for normal and emergency power. Since it is possible to dim every fixture in this layout, it allows this space to serve several different functions for several different effects. I am using four different scenes: LECTURE, A/V, MOVIE, and MAINTENANCE. This is in addition to an all-off scenario. In combination with time clocks for the entire building, this allows the space to meet automatic shut-off criteria.

Zone	Description	<u>Circuit #</u>	<u>Fixture</u> <u>Load</u>	<u># of</u> <u>Fixtures</u>	<u>Total</u> Load
а	Front Exit Lighting (PP3)	EDM4P-1	31	4	124 W
b	Front Chalkboard Lighting (PP2)	DM4P-1	47	10	470 W
с	Front Speaker Lighting (PP2)	DM4P-2	47	4	188 W
d	Front Center Downlighting (PP1)	DM4P-3	29	6	174 W
e	Front Left Downlighting (PP1)	DM4P-4	29	4	116 W
f	Front Right Downlighting (PP1)	DM4P-5	29	6	174 W
g	Middle Center Downlighting (PP1)	EDM4P-2	29	6	174 W
h	Middle Left Downlighting (PP1)	EDM4P-3	29	6	174 W
j	Middle Right Downlighting (PP1)	EDM4P-4	29	8	232 W
k	Back Center Downlighting (PP1)	EDM4P-5	29	12	348 W
1	Back Left Downlighting (PP1)	EDM4P-7	29	6	174 W
m	Back Right Downlighting (PP1)	EDM4P-8	29	8	232 W
n	Ramp Downlighting (PP3)	EDM4P-11	31	7	217 W
р	Back Exit Downlighting (PP3)	EDM4P-12	31	13	403 W
q	Existing Vestibule Lighting (A17B)	EDM4P-6	34	2	68 W
r	Sconces (PP5)	DM4P-6	19	8	152 W
S	In-Ramp Lighting (PP4)	EDM4P-13	4.2	9	37.8 W
t	In-Stair Lighting (PP4)	EDM4P-14	4.2	24	100.8 W

 Table 5.06
 Lecture Hall Dimming System – Zone Layout

"LECTURE" Scene:

This is a high light-level scene that focuses a lot of light on the front stage and speaker. The desk lighting is on at 80% light output, which still provides 50 footcandles but helps to extend lamp life. The side and back lighting features are on at 40% to focus attention to the front, but to make a more pleasant condition for the speaker to look at.

Zone	Description	Percent <u>Full</u> Output
а	Front Exit Lighting (PP3)	100%
b	Front Chalkboard Lighting (PP2)	100%
c	Front Speaker Lighting (PP2)	100%
d	Front Center Downlighting (PP1)	100%
e	Front Left Downlighting (PP1)	
f	Front Right Downlighting (PP1)	80%
g	Middle Center Downlighting (PP1)	
h	Middle Left Downlighting (PP1)	80%
j	Middle Right Downlighting (PP1)	80%
k	Back Center Downlighting (PP1)	80%
1	Back Left Downlighting (PP1)	80%
m	Back Right Downlighting (PP1)	80%
n	Ramp Downlighting (PP3)	40%
р	Back Exit Downlighting (PP3)	40%
q	Existing Vestibule Lighting (A17B)	100%
r	Sconces (PP5)	40%
s	In-Ramp Lighting (PP4)	100%
t	In-Stair Lighting (PP4)	100%

 Table 5.07
 Lecture Hall Dimming System – Zone Output Levels for "LECTURE" Scene

"A/V" Scene:

This is a lower light-level scene that removed as much light as possible from the front of the space, while still leaving lighting on over most of the desk areas. The front desk lighting is either at 25% light output or off, and the rest of the desk lighting is on at 75% light output, which still provides around 30-40 footcandles on the desks. The side and back lighting features are on at 25% to allow for egress without distracting from the front. This layout is good for PowerPoint presentations, slide shows, and other static visual presentations.

Zone	Description	Percent <u>Full</u> Output
а	Front Exit Lighting (PP3)	0%
b	Front Chalkboard Lighting (PP2)	0%
c	Front Speaker Lighting (PP2)	0%
d	d Front Center Downlighting (PP1)	
e	Front Left Downlighting (PP1)	25%
f	Front Right Downlighting (PP1)	25%
g	Middle Center Downlighting (PP1)	75%
h	Middle Left Downlighting (PP1)	75%
j	Middle Right Downlighting (PP1)	75%
k	Back Center Downlighting (PP1)	75%
1	Back Left Downlighting (PP1)	75%
m	Back Right Downlighting (PP1)	75%
n	Ramp Downlighting (PP3)	25%
р	Back Exit Downlighting (PP3)	25%
q	Existing Vestibule Lighting (A17B)	100%
r	Sconces (PP5)	25%
s	In-Ramp Lighting (PP4)	100%
t	In-Stair Lighting (PP4)	100%

 Table 5.08
 Lecture Hall Dimming System – Zone Output Levels for "A/V" Scene

"MOVIE" Scene:

This is a very low light-level scene that removed nearly all light from the room. The desk lighting is completely off, as is all lighting in the front area. The side and back lighting features are on at 10%, and the ramp and stair uplighting are still on for 100% to allow for emergency egress. This layout is appropriate for movies, video demonstrations, and other dynamic or low contrast visual presentations.

Zone	Description	Percent <u>Full</u> Output
а	Front Exit Lighting (PP3)	0%
b	Front Chalkboard Lighting (PP2)	0%
c	Front Speaker Lighting (PP2)	
d	Front Center Downlighting (PP1)	
e	Front Left Downlighting (PP1)	
f	Front Right Downlighting (PP1)	0%
g	Middle Center Downlighting (PP1)	0%
h	Middle Left Downlighting (PP1)	0%
j	Middle Right Downlighting (PP1)	0%
k	Back Center Downlighting (PP1)	0%
1	Back Left Downlighting (PP1)	0%
m	Back Right Downlighting (PP1)	0%
n	Ramp Downlighting (PP3)	10%
р	Back Exit Downlighting (PP3)	10%
q	Existing Vestibule Lighting (A17B)	100%
r	Sconces (PP5)	10%
s	In-Ramp Lighting (PP4)	100%
t	In-Stair Lighting (PP4)	100%

 Table 5.09
 Lecture Hall Dimming System – Zone Output Levels for "MOVIE" Scene

"MAINTENANCE" Scene:

This is a high light-level scene in which nearly all of the luminaires are on at 100%. The exception is the stair and ramp uplighting (which is off, to avoid any conflict with carpet-cleaning equipment). This is ideal for after-hours maintenance. I would also like this scene to be the default scene, in case of power failure reset.

Zone	Description	Percent <u>Full</u> Output
а	Front Exit Lighting (PP3)	100%
b	Front Chalkboard Lighting (PP2)	100%
c	Front Speaker Lighting (PP2)	100%
d	Front Center Downlighting (PP1)	100%
e	Front Left Downlighting (PP1)	100%
f	Front Right Downlighting (PP1)	100%
g	Middle Center Downlighting (PP1)	
h	Middle Left Downlighting (PP1)	100%
j	Middle Right Downlighting (PP1)	100%
k	Back Center Downlighting (PP1)	100%
1	Back Left Downlighting (PP1)	100%
m	Back Right Downlighting (PP1)	100%
n	Ramp Downlighting (PP3)	100%
р	Back Exit Downlighting (PP3)	100%
q	Existing Vestibule Lighting (A17B)	100%
r	Sconces (PP5)	100%
s	In-Ramp Lighting (PP4)	0%
t	In-Stair Lighting (PP4)	0%

 Table 5.10
 Lecture Hall Dimming System – Zone Output Levels for "MAINTENANCE" Scene

Calculations and Performance:

"LECTURE" Scene:

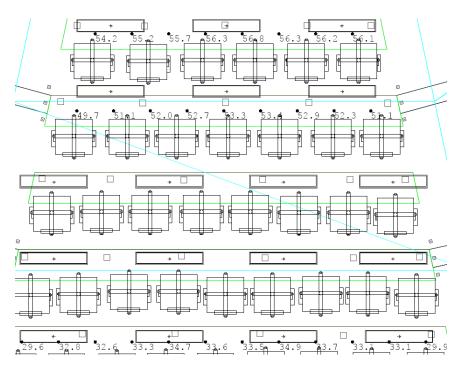


Figure 5.10 Lecture Hall – Illuminance on Desks During "LECTURE" Scene

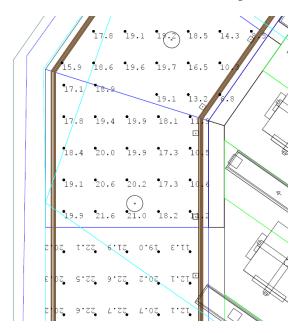


Figure 5.11 Lecture Hall – Illuminance on Ramp During "LECTURE" Scene

04/09/2008

3 24.6 29.0 31.0 32.0 31.6 32.2 33.0 35.0 <t< th=""><th></th></t<>	
5 19.6 21.6 22.9 24.0 24.7 24.8 25.0 24.8 24.1 24.0 23.7 23.4 23.5 23.7 23.9 24.6 25.3 26.0 26.8 27.7 28.2 28.8 28.7 2 2 19.2 20.5 21.5 22.3 23.0 23.4 23.6 23.6 23.2 23.1 23.0 22.9 23.0 23.2 23.4 23.9 24.5 25.2 26.0 26.9 27.4 27.5 27.3 2	31.8 31.2 29.9 26.
) 19.2 20.5 21.5 22.3 23.0 23.4 23.6 23.6 23.3 23.1 23.0 22.9 23.0 23.2 23.4 23.9 24.5 25.2 26.0 26.9 27.4 27.5 27.3 2	
	28.7 28.1 27.0 25.
	27.3 26.8 26.0 24.
3 19.8 20.3 21.0 21.7 22.3 22.7 23.0 23.2 23.1 23.0 23.0 23.0 23.1 23.8 23.6 24.0 24.6 25.4 26.2 26.8 27.1 27.2 27.0 2	27.0 26.6 26.0 25.
3 19.6 20.4 21.1 21.6 22.2 22.5 22.8 23.0 23.0 23.1 23.1 23.2 23.4 23.6 23.9 24.5 25.2 25.9 26.4 26.9 27.2 27.5 27.5 2	27.5 27.2 26.7 26.

Figure 5.12 Lecture Hall – Illuminance on Projection Screen During "LECTURE" Scene

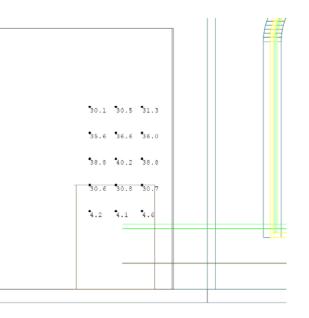


Figure 5.13 Lecture Hall – Illuminance on Speaker During "LECTURE" Scene

04/09/2008

"A/V" Scene:

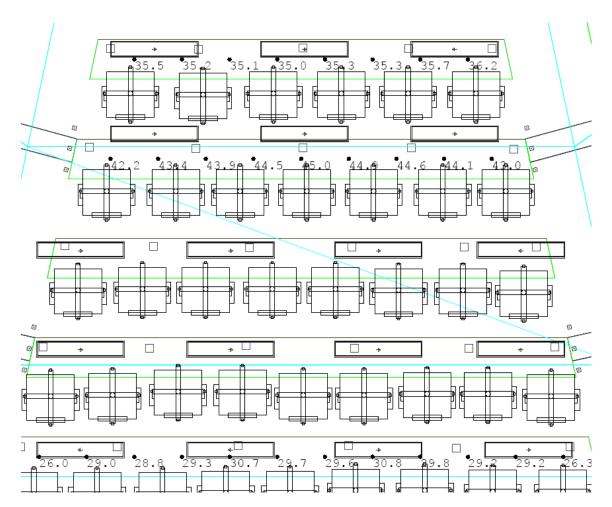


Figure 5.14 Lecture Hall – Illuminance on Desks During "A/V" Scene

3.8 3.	7 3.	7 \$.7	3.7	3.6	3.6	3.6	3.6	3.7	3 .7	3.7	3.7	3.7	3.8	3 .8	3.8	3.8	3.9	4 .0	4 .0	4.1	•4
3.9 3.	8 3.	8 3.7	3 .7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.8	3 .8	3.8	3.8	3.9	3.9	4.0	4.1	4.2	4
3.9 3.	9 3.	8 3.8	9 3.7	9 .7	3.7	3.7	9 .7	3.7	9 3.7	3.7	3.8	•3.8	3 .8	3.8	3.8	3.9	•4.0	• 4 .0	4 .1	4.3	4
4.1 4.	0 3.	9 3.8	З.в	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.8	3.8	3.8	3.8	3.8	3.9	4.0	4.0	4.2	4.3	•4
4.3 4.	1 4.	0 3.9	• 3 .8	3.7	3.7	3.7	9 3.7	3.7	3.7	3.8	3.8	3.8	3.8	3.8	3.8	3.9	4.0	4 .1	4.2	4.4	4
4.6 4.	4 4.	2 4 .0	9 3.9	9 3.8	3.8	3.7	9 3.7	3.7	3 .7	3.7	3.8	9 3.8	3.8	3.8	3.8	3.9	• 4.1	4.2	•4.4	4.6	4
4.9 4.	6 4.	4 4.2	4.0	3.9	3.8	3.8	3.8	3.8	2.8	3 8	3.8	3.8	3.8	3.9	2 9	4 0	4 2	4 2	• •	4 8	ų

Figure 5.15 Lecture Hall – Illuminance on Projection Screen During "A/V" Scene

Figure 5.16 Lecture Hall – Illuminance on Ramp During "A/V" Scene

04/09/2008

Rendered Images:

Figure 5.17 Color Rendering of Lecture Hall From Back Row Seating – "LECTURE" Scene


Figure 5.18 Color Rendering of Lecture Hall From Speaker Podium - "LECTURE" Scene

04/09/2008

Figure 5.19 Color Rendering of Lecture Hall From Back Row Seating - "A/V" Scene

Figure 5.20 Color Rendering of Lecture Hall From Speaker Podium - "A/V" Scene

Figure 5.21 Color Rendering of Lecture Hall From Back Row Seating - "MOVIE" Scene

Figure 5.22 Color Rendering of Lecture Hall From Speaker Podium - "MOVIE" Scene

Figure 5.23 Color Rendering of Lecture Hall From Back Row Seating - "MAINTENANCE" Scene

Figure 5.24 Color Rendering of Lecture Hall From Speaker Podium - "MAINTENANCE" Scene

Power Density Calculations:

<u>Space</u>	Matching ASHRAE Category	Power Allowance	Length (ft)	<u>Area</u> (ft ²)	Watts Allowed
Lecture Hall	Classroom/Lecture/Training	1.4 W/ft^2	-	2500	3500

Total Allowed 3500 W

 Table 5.11
 Power Allowance for Lecture Hall

<u>Type</u>	Quantity	<u>Input Watts / Luminaire</u>	<u>Total Watts / Type</u>
PP1	62	29	1798
PP2	14	47	658
PP3	24	31	744
PP4	33	4.2	138.6
PP5	8	19	152

Total Watts Consumed	3490.6 W
----------------------	----------

 Table 5.12
 Power Consumed by Lecture Hall

Based on the above calculation, the space meets the energy requirements set forth in ASHRAE 90.1 - 2004.

Conclusions:

The use of all –recessed luminaires in the ceiling allows for the maximization of the height the space has. Aligning the linear luminaires with the desks, though not typically the best layout for a learning space, works out well here because of the even distribution on the desks and the shape of the ceiling. There is plenty of light on the lecture area for good rendering of facial features and chalkboard writings. The control devices created 4 scenes that are representative of all of the major functions of the space. The "A/V" scene limits to light on the projection screens to less than 5 footcandles, meeting IES recommendations, while still putting 30-35 footcandles on the desks, which is more than acceptable. The new ceiling appears to be working well with the furniture and lighting layouts; I will analyze the success of the ceiling in relation to acoustics and incorporation of air distribution in the breadth studies.

Electrical Depth

Overview:

The main power for the Life Sciences & Philosophy comes from the main switchgear for Franklin & Marshall College. Power is run from existing lines in the front of the building to a basement substation at the northwest corner of the building. The 12.47KV service voltage is transformed down to 480Y/277V secondary service. Power is then distributed to various basement panels, 2 bus ducts, and the penthouse level. Each bus ducts serves one half of the building (north or south), and there are 2 electrical rooms on each floor (again, one on the north side of the building, the other servicing the south side). Most of the lighting runs on 277V. There are transformers converting the voltage down to 208Y/120 V service in each electrical room, on the penthouse level, and the main mechanical room. The 208Y/120 service is used for receptacle loads, incandescent lighting, and much of the heating for the space.

This Electrical Depth will focus on several components of the electrical distribution system. I have divided this into four separate studies, and for consistency, I have elected to do these studies independently of one another. While I acknowledge that anything that I change in the electrical distribution may have an effect on the system as a whole, it would be impractical to compare, say, the impact of changing copper feeders to aluminum, between the original system and the new system with various enhancements. This is because it would be more difficult to pinpoint what is actually causing the results to be the way they are. Like any good experiment or study, one independent variable needs to be isolated, and everything else needs to remain the same.

The first study will look at the impact of the new lighting design on the branch circuits and panelboards serving it. The second study is an analysis of creating one central 480 to 208Y/120 transformer to replace the seven transformers distributed to the various electrical rooms in the building. The third study looks at changing all of the copper feeders in the building to aluminum, in the hopes of saving significant money. The final study is a protective device coordination and fault current analysis to ensure that the system was properly designed.

Analysis of Circuits Affected By Lighting Design

Overview :

Although the majority of the building uses lighting at 277V (and thus, relatively low current), it is nevertheless still important to analyze the lighting design's effect on the panelboards serving the lighting. I will summarize the effects of each space's new lighting design on the panelboards and feeders serving the panelboards, and will then show calculations of each panelboard affected. Since I was unable to get detailed load calculations from the electrical engineer, I will be assuming that the original panelboards were designed appropriately. All feeders were copper with type THHN insulation in EMT conduit. As a design decision, I have opted to change all of my panelboards up to a minimum of 100A, which is more common than the 60A panels originally used here.

Exterior and Façade:

Since much of the lighting design for the exterior had not been performed yet, the loading for the exterior did go up a bit. However, the original lighting panels were sized with dedicated circuits for lighting, and the panels were sized with an anticipated lighting load.

Frey Atrium:

The atrium lighting system was originally controlled off of separate dimming panels. Since I will not require dimming for my design, I have decided to place all of the luminaires directly on the existing lighting panels. A total of seven panels will receive additional (albeit very small) loads, and the four dimming panels will receive a reduced load.

Ecology Teaching Lab:

All of the lighting for the space is on one circuit. Because I saved energy off of the original design, as shown below, I can confidently state that the new lighting design will have no effect on the sizing of the panelboard L2NA.

Bonchek Lecture Hall:

The lecture hall was also controlled off of dimming panels. Since scene and dimming control is critical for this space, the dimming panels would still make sense here. However, since I have no 120V lighting in the space, there will no longer be any load on the two 208Y/120 dimming panels from either the atrium or the lecture hall.

Exterior and Façade Circuiting Plans:

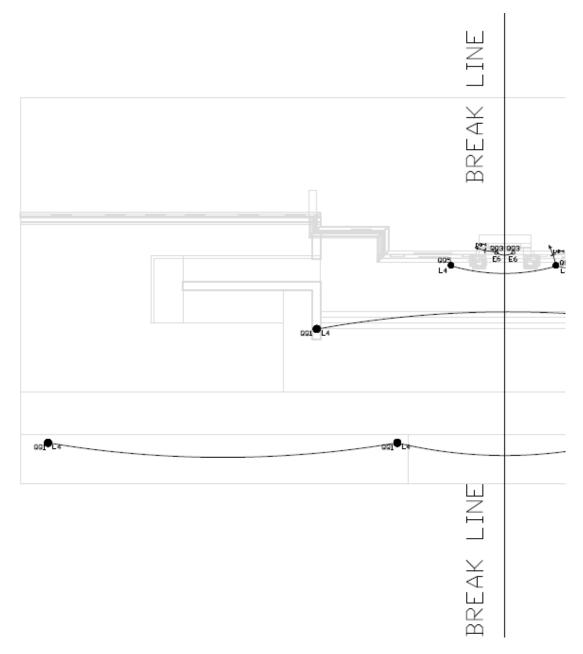


Figure 6.01 First Floor Circuiting Plan for East Entry and Façade – South Of Entrance

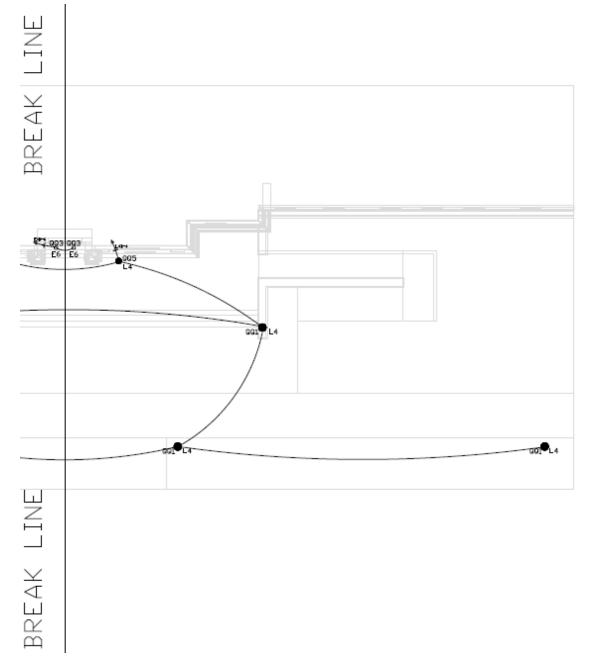


Figure 6.02 First Floor Circuiting Plan for East Entry and Façade – North Of Entrance

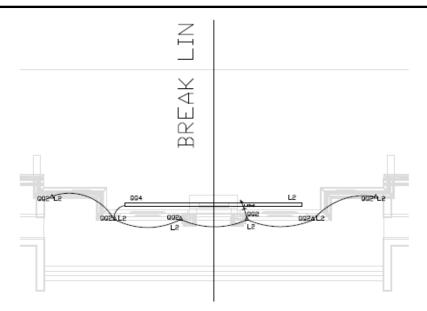


Figure 6.03 Second Floor Circuiting Plan – East Entry and Façade

Frey Atrium Circuiting Plans:

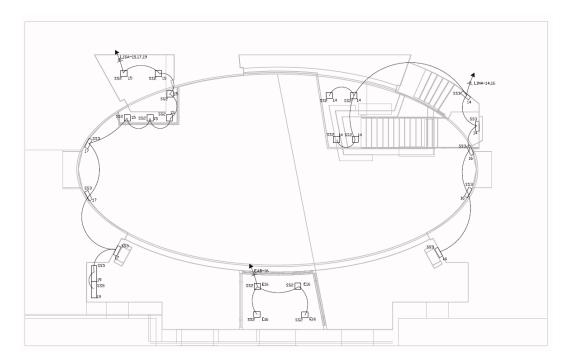


Figure 6.04 First Floor Circuiting Plan – Atrium

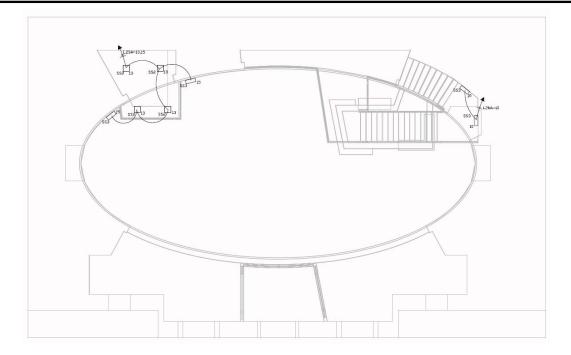


Figure 6.05 Second Floor Circuiting Plan – Atrium

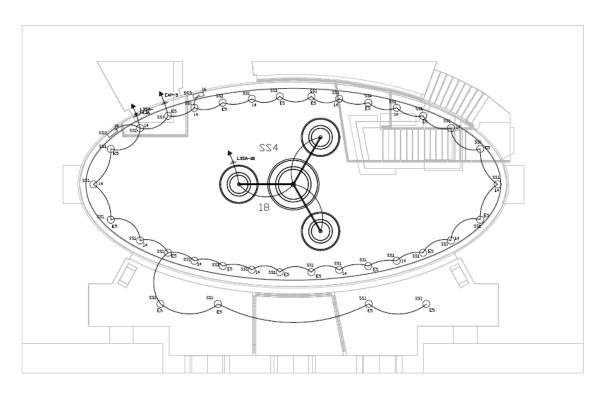


Figure 6.06 Third Floor Circuiting Plan – Atrium

Ecology Teaching Laboratory Circuiting Plan:

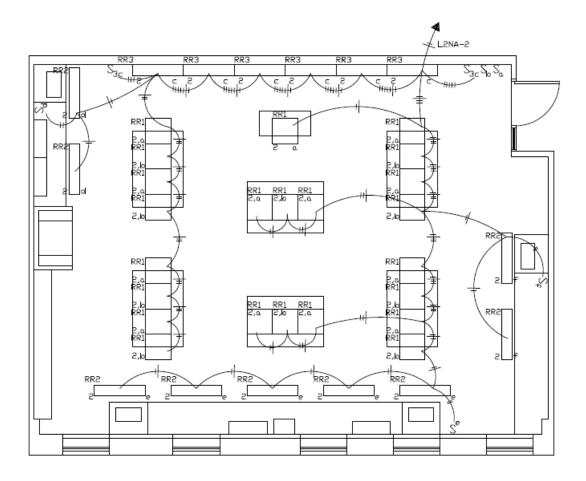


Figure 6.07 Second Floor Circuiting Plan – Ecology Teaching Lab

Bonchek Lecture Hall Circuiting Plan:

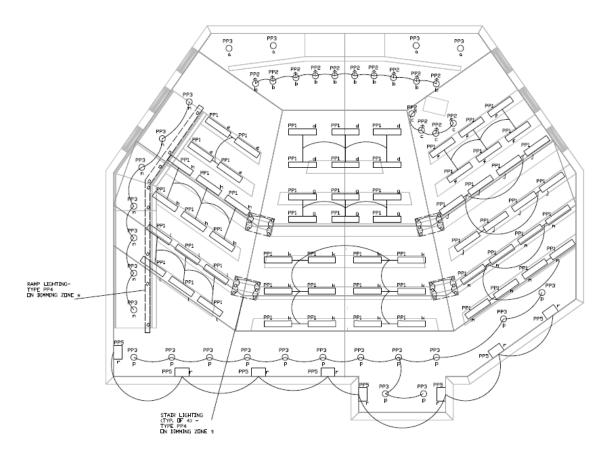


Figure 6.08 First Floor Circuiting Plan – Lecture Hall

Panel L4B:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Exterior

Circuit(s) Affected: 2, 4

Existing Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA , LOCATIO MOUNTIN	N:	м	ain		Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	RM 43-45	1625	20A/1P	1	*			2	20A/1P	0	Future Use	HID Lighting
Fluorescent Ltg	RM 33, 40	2005	20A/1P	3		+		4	20A/1P	525	POLE EAST	HID Lighting
Fluorescent Ltg	COR 000	1492	20A/1P	5			+	6	20A/1P	1295	POLE SOUTH WEST	HID Lighting
Fluorescent Ltg	RM 50-55	1206	20A/1P	7	+			8	20A/1P	1480	POLE WEST	HID Lighting
Fluorescent Ltg	STAIR WEST	314	20A/1P	9		+		10	20A/1P	750	GARDEN SOUTH	Incandescent Ltg
Fluorescent Ltg	STAIR SOUTH	216	20A/1P	11			+	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	٠			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
space	0	0	20A/1P	19	*			20	20A/1P	0	0	space
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	*			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			+	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			+	42	20A/1P	0		space
CONNECTED LOAD	0 (KW) - A	4.31								TOTAL DES	SIGN LOAD (KW)	13.64
CONNECTED LOAD	0 (KW) - B	3.59								POWER FA	CTOR	0.95
CONNECTED LOAD	(KW) - C	3.00								TOTAL DES	GIGN LOAD (AMPS)	17

 Table 6.01
 Existing Panelboard Schedule – Lighting Panel L4B

Revised Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA , LOCATIO MOUNTIN	N:	M	ain		Room		MIN. C/B AIC: OPTIONS:	22K		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	RM 43-45	1625	20A/1P	1	*			2	20A/1P	622	FRONT/EAST	HID Lighting
Fluorescent Ltg	RM 33, 40	2005	20A/1P	3		+		4	20A/1P	788	POLE EAST	HID Lighting
Fluorescent Ltg	COR 000	1492	20A/1P	5			٠	6	20A/1P	1295	POLE SOUTH WEST	HID Lighting
Fluorescent Ltg	RM 50-55	1206	20A/1P	7	٠			8	20A/1P	1480	POLE WEST	HID Lighting
Fluorescent Ltg	STAIR WEST	314	20A/1P	9		+		10	20A/1P	750	GARDEN SOUTH	Incandescent Ltg
Fluorescent Ltg	STAIR SOUTH	216	20A/1P	11			+	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	*			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
space	0	0	20A/1P	19	٠			20	20A/1P	0	0	space
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	٠			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	٠			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	٠			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			+	42	20A/1P	0		space
CONNECTED LOAD	0 (KW) - A	4.93								TOTAL DES	GIGN LOAD (KW)	14.74
CONNECTED LOAD	(KW) - B	3.86								POWER FA	CTOR	0.95
CONNECTED LOAD		3.00								TOTAL DES	GIGN LOAD (AMPS)	19

 Table 6.02
 Revised Panelboard Schedule – Lighting Panel L4B

Revised Panel Load: 19A

Revised Overcurrent Protection Trip Rating: 50A

Revised Feeder: 4-#8AWG wires + 1-#10AWG wires in 1" conduit

Voltage Drop:

Panel	D4BA
Phase Wire Size	600KCMIL
Feeder Length	35
Load (A)	169
Voltage Drop	-0.036%
Panel	L4B

Phase Wire Size	#8AWG
Feeder Length	10
Load (A)	19
Voltage Drop	-0.036%

Total Voltage	-0.072%
Drop	-0.07270

 Table 6.03
 Voltage Drop Calculation – Feeder for Lighting Panel L4B

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L4B as a result of change in load or voltage drop.

Panel L1NA:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Atrium

Circuit(s) Affected: 14, 16

Existing Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEI	PANEL TA LOCATIC MOUNTIN	N:	No	rth	n Electrical	Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
spare	0	0	20A/1P	1	+			2	20A/1P	1124	RM 100A, 114,120	Fluorescent Ltg
spare	0	0	20A/1P	3		+		4	20A/1P	2578	R 115-19, 121-24	Fluorescent Ltg
spare	0	0	20A/1P	5			٠	6	20A/1P	1485	R 100B-C,131-2	Fluorescent Ltg
spare	0	0	20A/1P	7	+			8	20A/1P	2017	RM 110, 130	Fluorescent Ltg
spare	0	0	20A/1P	9		+		10	20A/1P	3079	RM 132A-E, 138	Fluorescent Ltg
spare	0	0	20A/1P	11			٠	12	20A/1P	1512	R 139, 9A-E, 140, A	Fluorescent Ltg
spare	0	0	20A/1P	13	+			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			٠	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	+			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	+			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			٠	30	20A/1P	0	0	space
space		0	20A/1P	31	+			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	+			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAI	D (KW) - A	3.14								TOTAL DESIGN LOAD (KW) 14		
CONNECTED LOAD		5.66								POWER FACTOR		0.96
CONNECTED LOAD	· /	3.00								TOTAL DESIG	N LOAD (AMPS)	19

 Table 6.04
 Existing Panelboard Schedule – Lighting Panel L1NA

Revised Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA LOCATIO MOUNTIN	N:	No	orth	n Electrical	Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
spare	0	0	20A/1P	1	*			2	20A/1P	1124	RM 100A, 114,120	Fluorescent Ltg
spare	0	0	20A/1P	3		+		4	20A/1P	2578	R 115-19, 121-24	Fluorescent Ltg
spare	0	0	20A/1P	5				6	20A/1P	1485	R 100B-C,131-2	Fluorescent Ltg
spare	0	0	20A/1P	7	+			8	20A/1P	2017	RM 110, 130	Fluorescent Ltg
spare	0	0	20A/1P	9		+		10	20A/1P	3079	RM 132A-E, 138	Fluorescent Ltg
spare	0	0	20A/1P	11			*	12	20A/1P	1512	R 139, 9A-E, 140, A	Fluorescent Ltg
spare	0	0	20A/1P	13	٠			14	20A/1P	38	STRS 1ST TO 2ND	Fluorescent Ltg
spare	0	0	20A/1P	15		+		16	20A/1P	57	SCNS NORTH	Fluorescent Ltg
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	٠			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	+			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOA	D (KW) - A	3.18								TOTAL DESIGN LOAD (KW) 14.8		
CONNECTED LOA		5.71								POWER FACTOR		
CONNECTED LOA		3.00								TOTAL DESIG	N LOAD (AMPS)	19

 Table 6.05
 Revised Panelboard Schedule – Lighting Panel L1NA

Revised Panel Load: 19A

Revised Overcurrent Protection Trip Rating: 100A

Revised Feeder: 4-#8AWG wires + 1-#10AWG wires in 1" conduit

Voltage Drop:

Deres	NORTH BUS
Panel	DUCT
Phase Wire Size	#2AWG
Feeder Length	105
Load (A)	157
Voltage Drop	-0.578%
Panel	L1NA
Phase Wire Size	#8AWG
Feeder Length	10
Load (A)	19
Voltage Drop	-0.036%

Total Voltage Drop -0.614%

 Table 6.06
 Voltage Drop Calculation – Feeder for Lighting Panel L1NA

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L1NA as a result of change in load or voltage drop.

Panel L1SA:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Atrium

Circuit(s) Affected: 15, 17, 19

Existing Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEI	PANEL TA L LOCATIO MOUNTIN	N:	Sou	th Electrical	Room	MIN. C/B AIC: 22K OPTIONS:					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	в	C POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
Fluorescent Ltg	R 161,70,52, COR	3124	20A/1P	1	*		2	20A/1P	0	0	spare	
Fluorescent Ltg	RM 156, 62-69	2184	20A/1P	3		+	4	20A/1P	0	0	spare	
Fluorescent Ltg	R 173,74,75,81,84	1780	20A/1P	5			* 6	20A/1P	0	0	spare	
Fluorescent Ltg	RM 151A-J	2269	20A/1P	7	*		8	20A/1P	0	0	spare	
Fluorescent Ltg	RM 151D,E,144,43	2850	20A/1P	9		+	10	20A/1P	0	0	spare	
spare	0	0	20A/1P	11			* 12	20A/1P	0	0	spare	
spare	0	0	20A/1P	13	+		14	20A/1P	0	0	spare	
spare	0	0	20A/1P	15		+	16	20A/1P	0	0	spare	
spare	0	0	20A/1P	17			* 18	20A/1P	0	0	spare	
spare	0	0	20A/1P	19	+		20	20A/1P	0	0	spare	
space	0	0	20A/1P	21		+	22	20A/1P	0	0	space	
space	0	0	20A/1P	23			* 24	20A/1P	0	0	space	
space	0	0	20A/1P	25	+		26	20A/1P	0	0	space	
space	0	0	20A/1P	27		+	28	20A/1P	0	0	space	
space	0	0	20A/1P	29			* 30	20A/1P	0	0	space	
space		0	20A/1P	31	٠		32	20A/1P	0		space	
space		0	20A/1P	33		+	34	20A/1P	0		space	
space		0	20A/1P	35			* 36	20A/1P	0		space	
space		0	20A/1P	37	+		38	20A/1P	0		space	
space		0	20A/1P	39		+	40	20A/1P	0		space	
space		0	20A/1P	41			* 42	20A/1P	0		space	
CONNECTED LOAD (I	KW) - A	5.39							TOTAL DESIGN LOAD (KW) 15.			
CONNECTED LOAD	KW) - B	5.03							POWER FA	POWER FACTOR 0		
CONNECTED LOAD		1.78							TOTAL DE	SIGN LOAD (AMPS)	19	

 Table 6.07
 Existing Panelboard Schedule – Lighting Panel L1SA

Revised Panelboard:

PANELBOARD SCHEDULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 30A/3P C/B			PANEL TAG: LISA PANEL LOCATION: South Electrical Room PANEL MOUNTING: SURFACE							MIN. C/B AIC: 22K OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	R 161,70,52, COR	3124	20A/1P	1	٠			2	20A/1P	0	0	spare
Fluorescent Ltg	RM 156, 62-69	2184	20A/1P	3		+		4	20A/1P	0	0	spare
Fluorescent Ltg	R 173,74,75,81,84	1780	20A/1P	5			٠	6	20A/1P	0	0	spare
Fluorescent Ltg	RM 151A-J	2269	20A/1P	7	٠			8	20A/1P	0	0	spare
Fluorescent Ltg	RM 151D,E,144,43	2850	20A/1P	9		+		10	20A/1P	0	0	spare
spare	0	0	20A/1P	11			٠	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	٠			14	20A/1P	0	0	spare
Fluorescent Ltg	ATR CAFÉ	216	20A/1P	15		+		16	20A/1P	0	0	spare
Fluorescent Ltg	SCNS ATR NORTH	57	20A/1P	17			٠	18	20A/1P	0	0	spare
Fluorescent Ltg	DISPLAY WALL	48	20A/1P	19	+			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	٠			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			٠	30	20A/1P	0	0	space
space		0	20A/1P	31	٠			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			*	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			*	42	20A/1P	0		space
CONNECTED LOAD (KW) - A										TOTAL DESIGN LOAD (KW)		
CONNECTED LOAD	5.25								POWER FA	ACTOR	0.96	
CONNECTED LOAD (I	KW) - C	1.84								TOTAL DE	SIGN LOAD (AMPS)	20

 Table 6.08
 Revised Panelboard Schedule – Lighting Panel L1SA

Revised Panel Load: 20A

Revised Overcurrent Protection Trip Rating: 50A

Revised Feeder: 4-#8AWG wires + 1-#10AWG wires in 1" conduit

Voltage Drop:

Panel	SOUTH BUS DUCT					
Phase Wire Size	350KCMIL					
Feeder Length	240					
Load (A)	188					
Voltage Drop	-0.578%					
Panel	L1SA					
Phase Wire Size	#8AWG					
Feeder Length	10					
Load (A)	20					
Voltage Drop	-0.036%					

Total Voltage	-0.614%			
Drop	-0.014%			

 Table 6.09
 Voltage Drop Calculation – Feeder for Lighting Panel L1SA

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L1SA as a result of change in load or voltage drop.

Panel L2NA:

Original Overcurrent Protection Trip Rating: 60A Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit Lighting Design(s) Affecting Panel: Ecology Lab, Atrium Circuit(s) Affected: 2 (Ecology Lab), 10 (Atrium)

Existing Panelboard:

PANELBOARD SCHEDULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 60A SIZE/TYPE MAIN: 60A/3P C/B			PANEL TAG: L2NA PANEL LOCATION: North Electrical Room PANEL MOUNTING: SURFACE							MIN. C/B AIC: 22K OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
spare	0	0	20A/1P	1	٠	П		2	20A/1P	2696	R 210-212	Fluorescent Ltg
spare	0	0	20A/1P	3		+		4	20A/1P	3498	R 213-214	Fluorescent Ltg
spare	0	0	20A/1P	5			+	6	20A/1P	3357	R 204-06, 238-41	Fluorescent Ltg
spare	0	0	20A/1P	7	+			8	20A/1P	3023	RM 200, 231-32	Fluorescent Ltg
spare	0	0	20A/1P	9		+		10	20A/1P	0	0	spare
spare	0	0	20A/1P	11			*	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	*			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			*	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	٠			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		*		22	20A/1P	0	0	space
space	0	0	20A/1P	23			*	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		٠		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	*			32	20A/1P	0		space
space		0	20A/1P	33		٠		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		*		40	20A/1P	0		space
space		0	20A/1P	41			*	42	20A/1P	0		space
CONNECTED LOAD								TOTAL DESIGN LOAD (KW) 1				
CONNECTED LOAD								POWER FACTOR				
CONNECTED LOAD							POWER FACTOR 0.95 TOTAL DESIGN LOAD (AMPS 20					

 Table 6.10
 Existing Panelboard Schedule – Lighting Panel L2NA

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA , LOCATIO MOUNTIN	N:	No	orth	h Electrical		MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
spare	0	0	20A/1P	1	*			2	20A/1P	1896	R 210-212	Fluorescent Ltg
spare	0	0	20A/1P	3		+		4	20A/1P	3498	R 213-214	Fluorescent Ltg
spare	0	0	20A/1P	5			+	6	20A/1P	3357	R 204-06, 238-41	Fluorescent Ltg
spare	0	0	20A/1P	7	*			8	20A/1P	3023	RM 200, 231-32	Fluorescent Ltg
spare	0	0	20A/1P	9		+		10	20A/1P	38	ATR STR 2ND 3RD	Fluorescent Ltg
spare	0	0	20A/1P	11			*	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	٠			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		٠		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	+			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			*	30	20A/1P	0	0	space
space		0	20A/1P	31	٠			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			+	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		٠		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAD	(KW) - A	4.92		•	-			•	•	TOTAL D	ESIGN LOAD (KW)	14.77
CONNECTED LOAD	· /	3.54							POWER FACTOR 0.			
CONNECTED LOAD		3.36									ESIGN LOAD (AMPS	

 Table 6.11
 Revised Panelboard Schedule – Lighting Panel L2NA

Revised Panel Load: 19A

Revised Overcurrent Protection Trip Rating: 50A

Damal	NORTH BUS
Panel	DUCT
Phase Wire Size	#2AWG
Feeder Length	105
Load (A)	157
Voltage Drop	-0.578%
Panel	L2NA
Phase Wire Size	#8AWG
Feeder Length	10
Load (A)	19
Voltage Drop	-0.036%
	•

Total Voltage		
Drop -0.614%	D.	-0.614%

 Table 6.12
 Voltage Drop Calculation – Feeder for Lighting Panel L2NA

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L2NA as a result of change in load or voltage drop.

Panel L2SA:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Atrium

Circuit(s) Affected: 13, 15

Existing Panelboard:

		PAN	ELB (DAI	R	D		S C	H E D	ULE		
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PAN PANEL LO PANEL MO		N:	Sou	uth	Electr	ical Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	R 262, 262 A-M	3096	20A/1P	1	٠			2	20A/1P	0	0	spare
Fluorescent Ltg	R 260, 261	2752	20A/1P	3		+		4	20A/1P	0	0	spare
Fluorescent Ltg	R 256-258	3197	20A/1P	5			*	6	20A/1P	0	0	spare
Fluorescent Ltg	R 248, 54	2699	20A/1P	7	*			8	20A/1P	0	0	spare
Fluorescent Ltg	R 243, 245, 42, 46	3543	20A/1P	9		+		10	20A/1P	0	0	spare
Fluorescent Ltg	R 200, 280, 255	2862	20A/1P	11			٠	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	٠			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			*	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			*	30	20A/1P	0	0	space
space		0	20A/1P	31	٠			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			+	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			*	42	20A/1P	0		space
CONNECTED LOAD) (KW) - A	5.80								TOTAL DESIG	N LOAD (KW)	22.69
CONNECTED LOAD		6.30								POWER FACT		0.96
CONNECTED LOAD		6.06								TOTAL DESIG	N LOAD (AMPS)	29

 Table 6.13
 Existing Panelboard Schedule – Lighting Panel L2SA

		PAN	ELBO	DAI	R	D		S C	H E D	ULE		
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 50A/3P C/B			PAN PANEL LO PANEL MO		N:	Sou	uth	Electr	ical Room	MIN. C/B AIC: 22K OPTIONS:		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	R 262, 262 A-M	3096	20A/1P	1	*			2	20A/1P	0	0	spare
Fluorescent Ltg	R 260, 261	2752	20A/1P	3		+		4	20A/1P	0	0	spare
Fluorescent Ltg	R 256-258	3197	20A/1P	5			+	6	20A/1P	0	0	spare
Fluorescent Ltg	R 248, 54	2699	20A/1P	7	*			8	20A/1P	0	0	spare
Fluorescent Ltg	R 243, 245, 42, 46	3543	20A/1P	9		+		10	20A/1P	0	0	spare
Fluorescent Ltg	R 200, 280, 255	2862	20A/1P	11			+	12	20A/1P	0	0	spare
Fluorescent Ltg	DOWN BALC	144	20A/1P	13	*			14	20A/1P	0	0	spare
Fluorescent Ltg	SCNS BALC	38	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17	П		*	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23	Π		*	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27	П	+		28	20A/1P	0	0	space
space	0	0	20A/1P	29	П		+	30	20A/1P	0	0	space
space		0	20A/1P	31	*			32	20A/1P	0		space
space		0	20A/1P	33	Π	+		34	20A/1P	0		space
space		0	20A/1P	35			*	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			+	42	20A/1P	0		space
CONNECTED LOAD	(KW) - A	5.94								TOTAL DESIG	N LOAD (KW)	22.91
CONNECTED LOAD		6.33								POWER FACTOR		
CONNECTED LOAD		6.06								TOTAL DESIG	N LOAD (AMPS)	29

 Table 6.14
 Revised Panelboard Schedule – Lighting Panel L2SA

Revised Panel Load: 29A

Revised Overcurrent Protection Trip Rating: 50A

Panel	SOUTH BUS DUCT
Phase Wire Size	350KCMIL
Feeder Length	240
Load (A)	188
Voltage Drop	-0.578%
Panel	L2SA
Phase Wire Size	#8AWG
Feeder Length	10
Load (A)	29
Voltage Drop	-0.072%

-0.650%

 Table 6.15
 Voltage Drop Calculation – Feeder for Lighting Panel L2SA

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L2SA as a result of change in load or voltage drop.

Panel L3SA:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Exterior

Circuit(s) Affected: 14, 16, 18

Existing Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA . LOCATIO MOUNTIN	N:	So	uth	Electrical	Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	R 374,75,76	3083	20A/1P	1	٠			2	20A/1P	880	R 355G	Fluorescent Ltg
Fluorescent Ltg	R 361,62,63	3583	20A/1P	3		+		4	20A/1P	660	R 355F	Fluorescent Ltg
Fluorescent Ltg	R 373, CORR F-H	2039	20A/1P	5			٠	6	20A/1P	880	R 355E	Fluorescent Ltg
Fluorescent Ltg	R 346,7,54	2918	20A/1P	7	+			8	20A/1P	880	R 355C	Fluorescent Ltg
Fluorescent Ltg	R 343,44,45,45A	4191	20A/1P	9		+		10	20A/1P	880	R 355B	Fluorescent Ltg
spare	0	0	20A/1P	11			٠	12	20A/1P	1760	R 355A	Fluorescent Ltg
HVAC Fans	HT TRACE CT	1040	20A/1P	13	+			14	20A/1P	0	0	spare
HVAC Fans	HT TRACE CT	1040	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			+	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	+			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	+			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			*	30	20A/1P	0	0	space
space		0	20A/1P	31	+			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			*	36	20A/1P	0		space
space		0	20A/1P	37	+			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAD	(KW) - A	8.80								TOTAL DESIG	N LOAD (KW)	29.27
CONNECTED LOAD		10.35	POWER FACTOR									0.94
CONNECTED LOAD		4.68								TOTAL DESIG	N LOAD (AMPS)	37

 Table 6.16
 Existing Panelboard Schedule – Lighting Panel L3SA

		P A	NEL	BOA	R	I)	S C E	HEDU	ULE		
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	PANEL	PANEL TA . LOCATIO MOUNTIN	N:	So	utk	1 Electrical	Room	MIN. C/B AIC: 22K OPTIONS:				
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	R 374,75,76	3083	20A/1P	1	+			2	20A/1P	880	R 355G	Fluorescent Ltg
Fluorescent Ltg	R 361,62,63	3583	20A/1P	3		+		4	20A/1P	660	R 355F	Fluorescent Ltg
Fluorescent Ltg	R 373, CORR F-H	2039	20A/1P	5			*	6	20A/1P	880	R 355E	Fluorescent Ltg
Fluorescent Ltg	R 346,7,54	2918	20A/1P	7	+			8	20A/1P	880	R 355C	Fluorescent Ltg
Fluorescent Ltg	R 343,44,45,45A	4191	20A/1P	9		+		10	20A/1P	880	R 355B	Fluorescent Ltg
spare	0	0	20A/1P	11			٠	12	20A/1P	1760	R 355A	Fluorescent Ltg
HVAC Fans	HT TRACE CT	1040	20A/1P	13	+			14	20A/1P	504	ATR DWN NOR	Fluorescent Ltg
HVAC Fans	HT TRACE CT	1040	20A/1P	15		+		16	20A/1P	38	SCNS BALC	Fluorescent Ltg
spare	0	0	20A/1P	17			*	18	20A/1P	184	DÉCOR PEND	Fluorescent Ltg
spare	0	0	20A/1P	19	+			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	+			26	20A/1P	0	0	space
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	÷			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			*	36	20A/1P	0		space
space		0	20A/1P	37	+			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			*	42	20A/1P	0		space
CONNECTED LOAD	0 (KW) - A	9.31								TOTAL DESIG	N LOAD (KW)	30.18
CONNECTED LOAD	(KW) - B	10.39								POWER FACT	OR	0.94
CONNECTED LOAD	(KW) - C	4.86								TOTAL DESIG	N LOAD (AMPS)	39

 Table 6.17
 Revised Panelboard Schedule – Lighting Panel L3SA

Revised Panel Load: 39A

Revised Overcurrent Protection Trip Rating: 50A

	SOUTH BUS
Panel	DUCT
Phase Wire Size	350KCMIL
Feeder Length	240
Load (A)	188
Voltage Drop	-0.578%
Panel	L3SA
Phase Wire Size	#6AWG
Feeder Length	10
Load (A)	39
Voltage Drop	-0.108%

Total Voltage	-0.686%
Drop	-0.000 %

 Table 6.18
 Voltage Drop Calculation – Feeder for Lighting Panel L3SA

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel L3SA as a result of change in load or voltage drop.

Panel E4B:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Exterior, Atrium

Circuit(s) Affected: 6 (Exterior), 16 (Atrium)

Existing Panelboard:

	PANELBOARD SCHEDULE											
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 60A SIZE/TYPE MAIN: 60A/3P C/B			PA1 PANEL LC PANEL MO		N:	M	ain		al Room		MIN. C/B AIC: OPTIONS:	22K
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	VIVR EMERG	593	20A/1P	1	٠			2	20A/1P	129	REAR EXTERIOR	HID Lighting
Fluorescent Ltg	MECH/ELEC NORTH	1365	20A/1P	3		٠		4	20A/1P	1621	2ND FL N EMERG	Fluorescent Ltg
Fluorescent Ltg	2ND FL S EMERG	1267	20A/1P	5			+	6	20A/1P	326	EAST ENT EMERG	HID Lighting
Fluorescent Ltg	ELEV ROOM	130	20A/1P	7	*			8	20A/1P	556	WEST EMERG	HID Lighting
spare	0	0	20A/1P	9	П	٠		10	20A/1P	703	GARDEN EMERG	HID Lighting
Fluorescent Ltg	N STAIR EMERG	1937	20A/1P	11			+	12	20A/1P	0	0	spare
Fluorescent Ltg	S STAIR EMERG	1900	20A/1P	13	٠			14	20A/1P	0	0	space
Fluorescent Ltg	1ST FL N EMERG	1238	20A/1P	15		٠		16	20A/1P	0	0	space
Fluorescent Ltg	1ST FL S EMERG	1515	20A/1P	17	П		+	18	20A/1P	1175	BASEMENT EMERG	Fluorescent Ltg
space	0	0	20A/1P	19	*			20	20A/1P	0	0	space
space	0	0	20A/1P	21		٠		22	20A/1P	0	0	space
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		٠		28	20A/1P	0	0	space
space	0	0	20A/1P	29			+	30	20A/1P	0	0	space
space		0	20A/1P	31	*			32	20A/1P	0		space
space		0	20A/1P	33		٠		34	20A/1P	0		space
space		0	20A/1P	35			+	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		٠		40	20A/1P	0		space
space		0	20A/1P	41			+	42	20A/1P	0		space
CONNECTED LOAI	D (KW) - A	3.31								TOTAL DE	SIGN LOAD (KW)	18.07
CONNECTED LOAI	D (KW) - B	4.93								POWER FACTOR		0.96
CONNECTED LOAI	D (KW) - C	6.22								TOTAL DE	SIGN LOAD (AMPS)	23

 Table 6.19
 Existing Panelboard Schedule – Lighting Panel E4B

	PANELBOARD SCHEDULE													
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		PAI PANEL LO PANEL MO		N:	Ma	ain		al Room		MIN. C/B AIC: OPTIONS:	22K			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION		
Fluorescent Ltg	VIVR EMERG	593	20A/1P	1	*			2	20A/1P	129	REAR EXTERIOR	HID Lighting		
Fluorescent Ltg	MECH/ELEC NORTH	1365	20A/1P	3		*		4	20A/1P	1621	2ND FL N EMERG	Fluorescent Ltg		
Fluorescent Ltg	2ND FL S EMERG	1267	20A/1P	5			+	6	20A/1P	198	EAST ENT EMERG	HID Lighting		
Fluorescent Ltg	ELEV ROOM	130	20A/1P	7	*			8	20A/1P	556	WEST EMERG	HID Lighting		
spare	0	0	20A/1P	9	П	*		10	20A/1P	703	GARDEN EMERG	HID Lighting		
Fluorescent Ltg	N STAIR EMERG	1937	20A/1P	11			+	12	20A/1P	0	0	spare		
Fluorescent Ltg	S STAIR EMERG	1900	20A/1P	13	*			14	20A/1P	0	0	space		
Fluorescent Ltg	1ST FL N EMERG	1238	20A/1P	15		*		16	20A/1P	184	VESTIBULE LTG	Fluorescent Ltg		
Fluorescent Ltg	1ST FL S EMERG	1515	20A/1P	17	П		+	18	20A/1P	1175	BASEMENT EMERG	Fluorescent Ltg		
space	0	0	20A/1P	19	*			20	20A/1P	0	0	space		
space	0	0	20A/1P	21		*		22	20A/1P	0	0	space		
space	0	0	20A/1P	23			+	24	20A/1P	0	0	space		
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space		
space	0	0	20A/1P	27	Π	٠		28	20A/1P	0	0	space		
space	0	0	20A/1P	29	П		+	30	20A/1P	0	0	space		
space		0	20A/1P	31	*			32	20A/1P	0		space		
space		0	20A/1P	33		٠		34	20A/1P	0		space		
space		0	20A/1P	35			+	36	20A/1P	0		space		
space		0	20A/1P	37	*			38	20A/1P	0		space		
space						٠		40	20A/1P	0		space		
space		0	20A/1P	41			+	42	20A/1P	0		space		
CONNECTED LOAI	ONNECTED LOAD (KW) - A 3					TOTAL DESIGN LOAD (KW)								
CONNECTED LOAI	NNECTED LOAD (KW) - B 5									POWER FA	CTOR	0.96		
CONNECTED LOAI	D (KW) - C	6.09								TOTAL DE	SIGN LOAD (AMPS)	23		

 Table 6.20
 Revised Panelboard Schedule – Lighting Panel E4B

Revised Panel Load: 23A

Revised Overcurrent Protection Trip Rating: 50A

Panel	E4P
Fallel	E4F
Phase Wire Size	#8AWG
Feeder Length	285
Load (A)	29
Voltage Drop	-1.119%
Panel	E4B
Phase Wire Size	#8AWG
Feeder Length	200
Load (A)	23
Voltage Drop	-0.614%
Total Voltage Drop	-1.733%

 Table 6.21
 Voltage Drop Calculation – Feeder for Lighting Panel E4B

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel E4B as a result of change in load or voltage drop.

Panel E4P:

Original Overcurrent Protection Trip Rating: 100A

Original Feeder: 4-#2AWG wires + 1-#8AWG wires in 1-1/4" conduit

Lighting Design(s) Affecting Panel: Atrium

Circuit Affected: 5

Existing Panelboard:

		P A	NEI	BOA	łł	R	D	SC:	H E D	ULE		
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:	ŧW	PANEI	PANEL TA LOCATIC MOUNTIN	N:	Per	ntb		rical Room	MIN. C/B AIC: 22K OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	А	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
spare	0	0	20A/1P	1	*			2	20A/1P	1318	EM 3RD FL COL N	Fluorescent Ltg
spare	0	0	20A/1P	3		+		4	20A/1P	1399	EM 3RD FL COL S	Fluorescent Ltg
spare	0	0	20A/1P	5			٠	6	20A/1P	0	0	spare
Fluorescent Ltg	RM 401	325	20A/1P	7	*			8	20A/1P	0	0	spare
spare	0	0	20A/1P	9		+		10	20A/1P	0	0	spare
spare	0	0	20A/1P	11	Π		٠	12	20A/1P	0	0	spare
spare	0	0	20A/1P	13	*			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17	Π		٠	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	+			26	20A/1P	0	0	space
space	0	0	20A/1P	27	Π	+		28	20A/1P	0	0	space
space	0	0	20A/1P	29			٠	30	20A/1P	0	0	space
space		0	20A/1P	31	+			32	20A/1P	0		space
space		0	20A/1P	33		+		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		+		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAD CONNECTED LOAD CONNECTED LOAD	(KW) - B	1.64 1.40 0.00		TOTAL DESIGN LOAD (KW) POWER FACTOR TOTAL DESIGN LOAD (AMPS)								3.80 0.96 5

 Table 6.22
 Existing Panelboard Schedule – Lighting Panel E4P

		P A	NEI	BOA	١	R I	D	SC:	H E D	ULE				
SIZE/TYPE BUS:	VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 100A SIZE/TYPE MAIN: 50A/3P C/B				N:		nth	iouse Electr FACE	ical Room		MIN. C/B AIC: 22K OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	с	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION		
spare	0	0	20A/1P	1	*			2	20A/1P	1318	EM 3RD FL COL N	Fluorescent Ltg		
spare	0	0	20A/1P	3		+		4	20A/1P	1399	EM 3RD FL COL S	Fluorescent Ltg		
Fluorescent Ltg	EM ATR DWN	720	20A/1P	5			*	6	20A/1P	0	0	spare		
Fluorescent Ltg	RM 401	325	20A/1P	7	+			8	20A/1P	0	0	spare		
spare	0	0	20A/1P	9		+		10	20A/1P	0	0	spare		
spare	0	0	20A/1P	11			*	12	20A/1P	0	0	spare		
spare	0	0	20A/1P	13	+			14	20A/1P	0	0	spare		
spare	0	0	20A/1P	15		+		16	20A/1P	0	0	spare		
spare	0	0	20A/1P	17			*	18	20A/1P	0	0	spare		
spare	0	0	20A/1P	19	+			20	20A/1P	0	0	spare		
space	0	0	20A/1P	21		+		22	20A/1P	0	0	space		
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space		
space	0	0	20A/1P	25	+			26	20A/1P	0	0	space		
space	0	0	20A/1P	27		+		28	20A/1P	0	0	space		
space	0	0	20A/1P	29			*	30	20A/1P	0	0	space		
space		0	20A/1P	31	+			32	20A/1P	0		space		
space		0	20A/1P	33		+		34	20A/1P	0		space		
space		0	20A/1P	35			*	36	20A/1P	0		space		
space		0	20A/1P	37	+			38	20A/1P	0		space		
space		0	20A/1P									space		
space		0	20A/1P	41			*	42	20A/1P	0		space		
CONNECTED LOAD	(KW) - A	1.64								TOTAL DE	SIGN LOAD (KW)	4.70		
CONNECTED LOAD	(KW) - B	1.40		POWER FACTOR										
CONNECTED LOAD		0.72								TOTAL DE	SIGN LOAD (AMPS)	6		

 Table 6.23
 Revised Panelboard Schedule – Lighting Panel E4P

Revised Panel Load: 6A

Revised Overcurrent Protection Trip Rating: 50A

Panel	E4P
Phase Wire Size	#8AWG
Feeder Length	285
Load (A)	29
Voltage Drop	-1.119%

 Table 6.24
 Voltage Drop Calculation – Feeder for Lighting Panel E4P

Remarks:

The original design was excessive. As a result, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel E4P as a result of change in load or voltage drop.

Panel DM4P:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Lecture Hall

Circuits Affected: 1, 2, 3, 4, 5, 6, 7

Existing Panelboard:

		PAN	NELI	BOAD	RI	D		SCH	E D U	LE		
SIZE/TYPE BUS:	VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 60A SIZE/TYPE MAIN: 60A/3P C/B						ath	P iouse Electr FACE	rical Room		MIN. C/B AIC: OPTIONS:	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	LEC COVE	510	20A/1P	1	*			2	20A/1P	630	LEC COVE	Fluorescent Ltg
Fluorescent Ltg	LEC COVE	750	20A/1P	3	\square	*		4	20A/1P	765	LEC COVE	Fluorescent Ltg
Fluorescent Ltg	LEC BACK DOWN	238	20A/1P	5			*	6	20A/1P	170	LEC WW SOUTH	Fluorescent Ltg
Fluorescent Ltg	LEC WW NORTH	306	20A/1P	7	*			8	20A/1P	1517	ATR DOWN COR	Fluorescent Ltg
Fluorescent Ltg	ATR WALL COR	1110	20A/1P	9		*		10	20A/1P	750	HUM WALL	Fluorescent Ltg
Fluorescent Ltg	HUM ACCENT	150	20A/1P	11			*	12	20A/1P	150	HUM ACCENT	Fluorescent Ltg
spare	0	0	20A/1P	13	+			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		*		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			*	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		*		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27	П	*		28	20A/1P	0	0	space
space	0	0	20A/1P	29			٠	30	20A/1P	0	0	space
space		0	20A/1P	31	+			32	20A/1P	0		space
space		0	20A/1P	33		*		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		*		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAD	D (KW) - A	2.96	5 TOTAL DESIGN LOAD (KW)								8.81	
CONNECTED LOAD		3.38								POWER FA	CTOR	0.98
CONNECTED LOAD) (KW) - C	0.71								TOTAL DE	SIGN LOAD (AMPS)	11

 Table 6.25
 Existing Panelboard Schedule Dimming Panel DM4P

	PANELBOARD SCHEDULE											
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:			PANEL TAG: DM4P PANEL LOCATION: Penthouse Electrical Room PANEL MOUNTING: SURFACE								MIN. C/B AIC: OPTIONS:	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	в	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	LEC CHALK	470	20A/1P	1	*			2	20A/1P	188	LEC SPEAKER	Fluorescent Ltg
Fluorescent Ltg	LEC CEN FRONT	174	20A/1P	3		*		4	20A/1P	116	LEC LEFT FRON	Fluorescent Ltg
Fluorescent Ltg	LEC RIGHT FRON	174	20A/1P	5			٠	6	20A/1P	152	LEC SCONCES	Fluorescent Ltg
spare	0	0	20A/1P	7	*			8	20A/1P	1517	ATR DOWN COR	Fluorescent Ltg
Fluorescent Ltg	ATR WALL COR	1110	20A/1P	9		*		10	20A/1P	750	HUM WALL	Fluorescent Ltg
Fluorescent Ltg	HUM ACCENT	150	20A/1P	11			٠	12	20A/1P	150	HUM ACCENT	Fluorescent Ltg
spare	0	0	20A/1P	13	+			14	20A/1P	0	0	spare
spare	0	0	20A/1P	15		*		16	20A/1P	0	0	spare
spare	0	0	20A/1P	17			٠	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	*			20	20A/1P	0	0	spare
space	0	0	20A/1P	21		*		22	20A/1P	0	0	space
space	0	0	20A/1P	23			٠	24	20A/1P	0	0	space
space	0	0	20A/1P	25	*			26	20A/1P	0	0	space
space	0	0	20A/1P	27		*		28	20A/1P	0	0	space
space	0	0	20A/1P	29			٠	30	20A/1P	0	0	space
space		0	20A/1P	31	+			32	20A/1P	0		space
space		0	20A/1P	33		*		34	20A/1P	0		space
space		0	20A/1P	35			٠	36	20A/1P	0		space
space		0	20A/1P	37	*			38	20A/1P	0		space
space		0	20A/1P	39		*		40	20A/1P	0		space
space		0	20A/1P	41			٠	42	20A/1P	0		space
CONNECTED LOAD CONNECTED LOAD		2.18 2.15								TOTAL DE POWER FA	SIGN LOAD (KW)	6.19 0.99
CONNECTED LOAD		0.63									SIGN LOAD (AMPS)	8

 Table 6.26
 Revised Panelboard Schedule – Dimming Panel DM4P

Revised Panel Load: 8A

Revised Overcurrent Protection Trip Rating: 50A

Panel	D4BA
Phase Wire Size	600KCMIL
Feeder Length	35
Load (A)	169
Voltage Drop	-0.036%
Panel	DM4P

Panel	DM4P
Phase Wire Size	#6AWG
Feeder Length	20
Load (A)	8
Voltage Drop	-0.036%

Total Voltage	-0.072%
Drop	-0.07270

 Table 6.27
 Voltage Drop Calculation – Feeder for Dimming Panel DM4P

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel DM4P as a result of change in load or voltage drop.

Panel EDM4P:

Original Overcurrent Protection Trip Rating: 60A

Original Feeder: 4-#6AWG wires + 1-#10AWG wires in 1" conduit

Lighting Design(s) Affecting Panel: Lecture Hall

Circuits Affected: 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14

Existing Panelboard:

		PAN	ELB	OAF	ł)	SCH	E D U	LE			
SIZE/TYPE BUS:	VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 60A SIZE/TYPE MAIN: 60A/3P C/B						14P house Electr RFACE	rical Room	MIN. C/B AIC: 22K OPTIONS:			
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	вс	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
Fluorescent Ltg	LEC DOWN CENT	384	20A/1P	1	+		2	20A/1P	1152	LEC DOWN CENT	Fluorescent Ltg	
Fluorescent Ltg	LEC DOWN CENT	1088	20A/1P	3		+	4	20A/1P	180	LEC STEP	Fluorescent Ltg	
Fluorescent Ltg	LEC RAMP	36	20A/1P	5		+	6	20A/1P	68	LEC DOWN VEST	Fluorescent Ltg	
Fluorescent Ltg	LEC DOWN EGRS	68	20A/1P	7	*		8	20A/1P	200	ATR DOWN VEST	Fluorescent Ltg	
Fluorescent Ltg	ATR DOWN COR	962	20A/1P	9	П	+	10	20A/1P	1200	HUM EMERG DOWN	Fluorescent Ltg	
spare	0	0	20A/1P	11		+	12	20A/1P	0	0	spare	
spare	0	0	20A/1P	13	*		14	20A/1P	0	0	spare	
spare	0	0	20A/1P	15	Π	+	16	20A/1P	0	0	spare	
spare	0	0	20A/1P	17		+	18	20A/1P	0	0	spare	
spare	0	0	20A/1P	19	+		20	20A/1P	0	0	spare	
space	0	0	20A/1P	21		+	22	20A/1P	0	0	space	
space	0	0	20A/1P	23		+	24	20A/1P	0	0	space	
space	0	0	20A/1P	25	+		26	20A/1P	0	0	space	
space	0	0	20A/1P	27		+	28	20A/1P	0	0	space	
space	0	0	20A/1P	29		+	30	20A/1P	0	0	space	
space		0	20A/1P	31	+		32	20A/1P	0		space	
space		0	20A/1P	33		+	34	20A/1P	0		space	
space		0	20A/1P	35		+	36	20A/1P	0		space	
space		0	20A/1P	37	+		38	20A/1P	0		space	
space		0	20A/1P	39	\square	+	40	20A/1P	0		space	
space		0	20A/1P	41		+	42	20A/1P	0		space	
CONNECTED LOAD ((KW) - A	1.80				•		-	TOTAL DI	SIGN LOAD (KW)	6.67	
CONNECTED LOAD		3.43							POWER F.		0.98	
CONNECTED LOAD (KW) - C 0.10 TOTAL DESIGN LOAD (AMPS)											8	

 Table 6.28
 Existing Panelboard Schedule – Dimming Panel EDM4P

	PANELBOARD SCHEDULE										
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:			PANEL	PANEL TA , LOCATIO MOUNTIN	N:	Pent	house Electr	rical Room		MIN. C/B AIC: OPTIONS:	22K
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	вс	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	LEC DOWN FRONT	124	20A/1P	1	+		2	20A/1P	174	LEC CEN MIDDLE	Fluorescent Ltg
Fluorescent Ltg	LEC LEFT MIDDLE	174	20A/1P	3		+	4	20A/1P	232	LEC RIGHT MIDDLE	Fluorescent Ltg
Fluorescent Ltg	LEC CEN BACK	348	20A/1P	5		+	6	20A/1P	68	LEC VEST	Fluorescent Ltg
Fluorescent Ltg	LEC LEFT BACK	174	20A/1P	7	+		8	20A/1P	232	LEC RIGHT BACK	Fluorescent Ltg
Fluorescent Ltg	ATR DOWN COR	962	20A/1P	9		+	10	20A/1P	1200	HUM EMERG DOWN	Fluorescent Ltg
Fluorescent Ltg	LEC DOWN RAMP	217	20A/1P	11		+	12	20A/1P	403	LEC DOWN BACK	Fluorescent Ltg
spare	LEC STAIRS	38	20A/1P	13	+		14	20A/1P	101	LEC RAMP	spare
spare	0	0	20A/1P	15		+	16	20A/1P	0	0	spare
spare	0	0	20A/1P	17		+	18	20A/1P	0	0	spare
spare	0	0	20A/1P	19	+		20	20A/1P	0	0	spare
space	0	0	20A/1P	21		+	22	20A/1P	0	0	space
space	0	0	20A/1P	23		+	24	20A/1P	0	0	space
space	0	0	20A/1P	25	+		26	20A/1P	0	0	space
space	0	0	20A/1P	27		+	28	20A/1P	0	0	space
space	0	0	20A/1P	29		+	30	20A/1P	0	0	space
space		0	20A/1P	31	+		32	20A/1P	0		space
space		0	20A/1P	33		+	34	20A/1P	0		space
space		0	20A/1P	35		+	36	20A/1P	0		space
space		0	20A/1P	37	+		38	20A/1P	0		space
space		0	20A/1P	39		+	40	20A/1P	0		space
space		0	20A/1P	41		+	42	20A/1P	0		space
CONNECTED LOAD	(KW) - A	0.84							TOTAL DI	ESIGN LOAD (KW)	5.39
CONNECTED LOAD	(KW) - B	2.57	7 POWER FACTOR								0.98
CONNECTED LOAD	(KW) - C	1.04							TOTAL DI	ESIGN LOAD (AMPS)	7

 Table 6.29
 Revised Panelboard Schedule – Dimming Panel EDM4P

Revised Panel Load: 7A

Revised Overcurrent Protection Trip Rating: 50A

-	
Panel	EQD4P
Phase Wire Size	600KCMIL
Feeder Length	210
Load (A)	250
Voltage Drop	-0.397%
Panel	EDM4P
Phase Wire Size	#8AWG

Feeder Length	20
Load (A)	7
Voltage Drop	-0.036%
8 1	

Total Voltage	-0.433%
Drop	-0.433%

 Table 6.30
 Voltage Drop Calculation – Feeder for Dimming Panel EDM4P

Remarks:

The original design was excessive. While I switched up to a more-common 100A panel, I had to switch down to a 50A feeder and breaker. If this were a retrofit project, I would not be recommending any changes to the feeder or panelboard sizing for panel EDM4P as a result of change in load or voltage drop.

Analysis of Central vs. Distributed Transformers

Overview:

In the original design, there was a 480Δ to 208Y/120V transformer in each electrical room to step down voltage for receptacle, motor, and other equipment loads. Each of these transformers was rated at 112.5 KVA, and with the exception of the basement transformer, each was connected to the building's distribution system through a 600A bus duct. I felt that it might be possible to combine these transformers (seven in all) into one central transformer in the hopes of lowering costs (both for materials and labor).

Label	<u>Level</u>	<u>Room</u>	<u>KVA</u> <u>Rating</u>	<u>Primary</u> <u>Voltage</u>	<u>Secondary</u> <u>Voltage</u>	<u>Type</u>	Primary OLP	<u>Secondary</u> <u>OLP</u>
А	1st Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
В	2nd Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
C	3rd Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
D	1st Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
Е	2nd Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
F	3rd Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A
G	Basement	Main Electrical	112.5	480Δ	208Y/120	Dry Type	200A	400A

Specific Transformers Being Replaced:

Table 7.01 Details for Existing Transformers to be Combined

From a calculation of the loads that these transformers service, and adding approximate 15% spare capacity, it was determined that a 750 KVA transformer would be most appropriate for handling these loads. This transformer would be placed in the basement, in the approximate location where transformer G is currently. The calculation for this can be found in Appendix E.

Label	<u>Level</u>	<u>Room</u>	<u>KVA</u> <u>Rating</u>	<u>Primary</u> <u>Voltage</u>	<u>Secondary</u> <u>Voltage</u>	<u>Type</u>	<u>Primary</u> <u>OLP</u>	<u>Secondary</u> <u>OLP</u>
А	Basement	Main Electrical	750	480Δ	208Y/120	Dry Type	1000A	2500A

 Table 7.02
 Details for Proposed Central Transformer

Other Components Affected:

The first issue that arose was locating a distribution panel for the secondary side feeder from the central transformer to connect into. The logical choice was distribution panel D2BA, which was originally being fed by transformer G. Since D2BA would have to be sized at 2500A, this put D2BA into the switchboard class.

The 480Y/277V bus ducts would only be servicing 3 lighting panelboards each. Each duct would be used for no more than 80 A, making bus duct impractical here. Instead, I chose to feed the lighting panels from distribution panel D4BA. The panelboards would change to "feed-through" panelboards, allowing the panels to be fed directly through each other. This allows for the least length of wire to be used, and for the lowest installation costs.

Bus duct would still be useful, but for 208Y/120V distribution. In the same locations as the original location, I chose to use 1200A bus ducts for the 208Y/120V system. As stated above, these are being fed off of distribution panel (now switchboard) D2BA. Breakers off of the bus ducts would change accordingly.

Distribution panel D4BA would remain the same size, as all six lighting panels and the original 112.5 KVA transformer in the basement require about the same amount of power. Other than that, the only other major change would be the various feeders.

Riser Diagrams of Main Electrical Room:

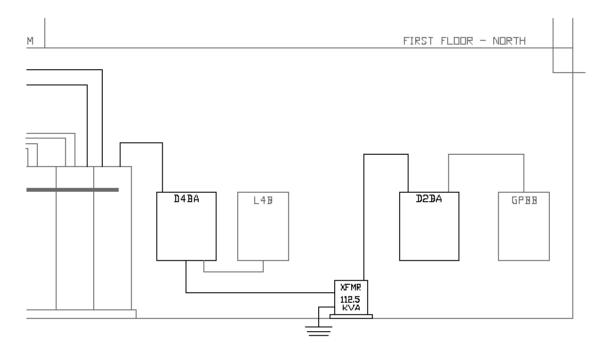


Figure 7.01 Riser Diagram of Main Electrical Room – Existing System

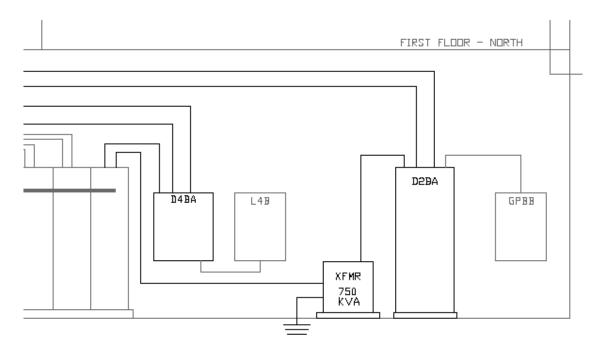


Figure 7.02 Riser Diagram of Main Electrical Room – Proposed System

Riser Diagrams of First Floor South Electrical Room:

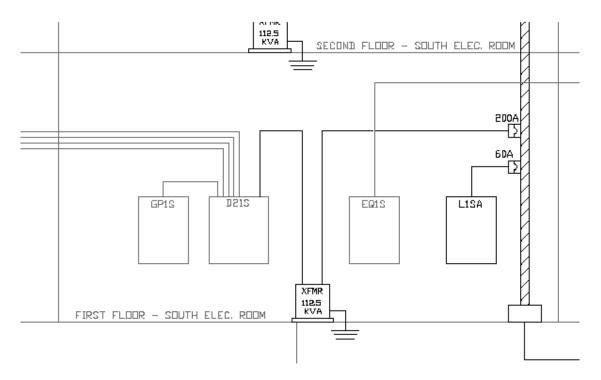


Figure 7.03 Riser Diagram of South Electrical Room – Existing System

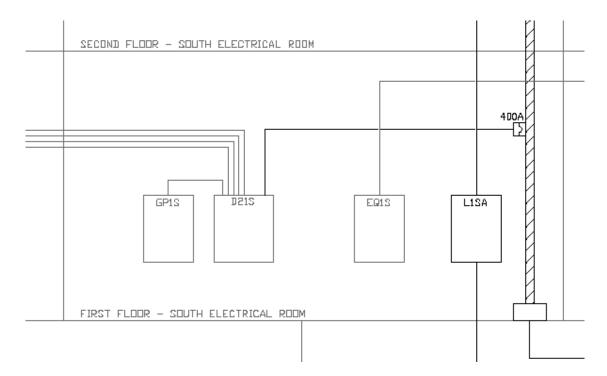


Figure 7.04 Riser Diagram of South Electrical Room – Proposed System

Cost Analysis:

Category	Cost of Existing System	Cost Of New System	Difference
Feeders	\$61,096.37	\$141,472.34	\$80,375.97
Transformers	\$56,832.30	\$46,737.00	(\$10,095.30)
Breakers	\$23,222.70	\$36,720.00	\$13,497.30
Bus Ducts	\$22,680.00	\$36,720.00	\$14,040.00
Panelboards	\$30,341.25	\$49,762.35	\$19,421.10
TOTAL	\$194,172.62	\$311,411.69	\$117,239.07
TOTAL w/ Loc. Factor	\$177,862.12	\$285,253.11	\$107,390.99

The following data was compiled using the 2008 version of <u>RS Means Electrical</u> <u>Cost Data</u>. Full calculations are available in Appendix E of this report.

Table 7.03 Cost Analysis for Central and Distributed Transformer Systems

This chart clearly showed that using a central transformer in this scenario is not an economically viable option, and since the original design works just as effectively, I would recommend remaining with the existing transformer layout.

Reasons for This Outcome:

A further look at the calculations shows why the central transformer system is so much more expensive. The feeders distributing power to the bus ducts are among the longest in the building. To accommodate the higher currents required for the lower voltage system, the wires had to be greatly upsized and use many sets of wires. As a result, the feeder to the South Bus Duct increased in cost by over \$40,000; the feeder to the North Bus Duct nearly \$30,000. In addition, the fact that distribution panel D2BA had to be upsized and changed to a switchboard greatly increased the cost of that panel (by nearly \$25,000).

One of the aspects of this building that works against a central transformer system is the location of the main electrical room. The main electrical room is located at the northwest corner of the building, requiring great distance to feed both bus ducts, especially the South Bus Duct. Had the electrical room been more centrally located, the costs of these feeders, and many other feeders throughout the basement floor, could have been greatly reduced. It would be incorrect to state that changing the location would make a central transformer system more viable; other factors would still leave it as a more expensive option. However, the differences would have been less pronounced.

Analysis of Aluminum vs. Copper Feeders

Overview:

The price of copper continues to increase, and many electrical designers and contractors are exploring aluminum as a more cost-effective option. Given the number of feeders in the building and the lengths of many of these feeders, this may be a good building to take advantage of potentially significant savings.

Besides providing cost-savings, aluminum is significantly lighter than copper, which can make labor for wire installation easier and potentially less time consuming. It is for these reasons that the vast majority of utility transmission is done using aluminum wiring. That said, many owners are still leery of using aluminum wiring. One of the major reasons for this is reported fires as a result of improper terminations of the aluminum wire. Most of these were caused by poor installation, and improved technology and labor practices have made this virtually a non-issue today. Aluminum wiring is still banned for use for branch circuit wiring, but is approved by the NEC and NFPA for use in feeders.

There are a couple of steps for aluminum wire installation that are different than copper installation, and thus must be considered. Aluminum is much more prone to oxidation that copper, which can block connections from being complete and can potentially result in fire. Therefore, prior to terminating the feeders, the wires need to be cleaned to remove any oxidation already formed and treated with an antioxidant joint compound. Also, like copper wiring, aluminum wiring connections must be properly torqued. If the connection is too loose, this can create an open circuit scenario. If the connection is too tight, this can reduce the ability of the current to flow properly, which can create a hot termination, and once again can result in fire. All that said, the majority of electrical contractors are knowledgeable in the safe installation of aluminum wiring, and can help owners take advantage of significant cost-savings without compromising the safety of their occupants.

Cost Analysis:

Feeder Label	Start	End	Wires (LF)	Conduit (LF)	Copper Feeder Cost	Aluminum Feeder Cost
3	SWB-1	NORTH DUCT	105	95	16,611.62	10,780.02
4	NORTH DUCT	L1NA	10	6	110.04	106.50
5	NORTH DUCT	XFMR 1	10	6	294.81	257.18
6	XFMR 1	D21N	10	6	1,063.53	608.04
7	D21N	GP1N	15	10	290.66	232.94
8	D21N	R1NA	55	50	3,052.72	2,221.86
9	D21N	R1NB	65	60	848.78	866.33
10	D21N	R1NC	90	85	1,187.46	1,215.47
11	D21N	R1ND	75	70	984.25	1,005.99
12	NORTH DUCT	L2NA	10	6	110.04	106.50
13	NORTH DUCT	XFMR 2	10	6	294.81	257.18
14	XFMR 2	D22N	10	6	1,063.53	608.04
15	D22N	GP2N	25	20	620.87	529.34
16	D22N	R2NA	90	85	1,187.46	1,215.47
17	D22N	R2NB	40	35	1,214.53	951.01
18	D22N	R2NC	70	65	2,169.11	1,707.95
19	NORTH DUCT	L3NA	10	6	110.04	106.50
20	NORTH DUCT	XFMR 3	10	6	294.81	257.18
21	XFMR 3	D23N	10	6	1,063.53	608.04
22	D23N	GP3N	10	6	188.24	148.80
23	D23N	R3NA	55	50	713.31	726.67
24	D23N	R3NB	60	55	1,850.92	1,455.64
25	D23N	R3NC	50	45	1,532.72	1,203.32
26	SWB-1	SOUTH DUCT	240	230	38,623.77	25,294.41
27	SOUTH DUCT	L1SA	10	6	110.04	106.50
28	SOUTH DUCT	XFMR 4	10	6	294.81	257.18
29	XFMR 4	D21S	10	6	1,063.53	608.04
30	D218	GP1S	10	6	188.24	148.80
31	D21S	R1SA	65	60	848.78	866.33
32	D21S	R1SB	105	100	1,390.67	1,424.96
33	D21S	R1SC	55	50	713.31	726.67
34	D21S	R1SD	100	95	1,322.93	1,355.13
35	SOUTH DUCT	L2SA	10	6	110.04	106.50
36	SOUTH DUCT	XFMR 5	10	6	294.81	257.18
37	XFMR 5	D22S	10	6	1,063.53	608.04
38	D228	GP2S	10	6	271.59	205.71
39	D228	R2SA	45	40	1,373.63	1,077.17
40	D228	R2SB	100	95	2,172.56	1,829.12
41	SOUTH DUCT	L3SA	10	6	110.04	106.50

The following calculations were done using data from the 2008 version of <u>RS Means</u> Electrical Cost Data. Full details of these calculations can be found in Appendix F.

Table 8.01a Compressed Version of Copper and Aluminum Feeder Cost Comparison

Feeder Label	Start	End	Wires (LF)	Conduit (LF)	Copper Feeder Cost	Aluminum Feeder Cost
42	SOUTH DUCT	XFMR 6	10	6	294.81	257.18
43	XFMR 6	D23S	10	6	1,063.53	608.04
44	D23S	GP3S	10	6	188.24	148.80
45	D23S	R3SA	50	45	1,065.56	890.19
46	D238	R3SB	65	60	2,010.02	1,581.80
47	D23S	R3SC	85	80	4,776.20	3,492.15
48	D23S	R3SD	75	70	984.25	1,005.99
49	D23S	R3SE	30	25	622.76	514.62
50	SWB-1	D4P	200	190	32,101.65	20,993.85
51	D4P	G4P	20	15	486.95	411.82
52	SWB-1	D4BA	35	30	3,998.16	2,513.30
53	D4BA	XFMR 7	10	6	294.81	257.18
54	XFMR 7	D2BA	10	6	1,063.53	608.04
55	D2BA	GPBA	10	6	188.24	148.80
56	D4BA	L4B	10	6	110.04	106.50
57	SWB-1	D4BB	280	270	8,792.96	6,948.32
58	D4BB	XFMR 8	10	6	86.01	94.35
59	XFMR 8	GPBB	10	6	188.24	148.80
60	SWB-1	ATS 100	200	190	4,345.11	3,658.23
61	GEN	ATS 100	70	65	1,508.36	1,265.76
62	ATS 100	E4P	15	10	290.66	232.94
63	E4P	XFMR 9	10	6	62.72	57.94
64	XFMR 9	E2P	10	6	84.66	85.74
65	E4P	E4B	200	190	2,645.87	2,710.26
66	SWB-1	ATS 400	200	190	23,415.75	15,156.45
67	GEN	ATS 400	70	65	8,149.55	5,240.57
68	ATS 400	EQD4P	15	10	1,625.94	954.86
69	EQD4P	EQD4B	200	195	15,855.41	10,404.11
70	EQD4B	V4BA	10	6	110.04	106.50
71	EQD4B	XFMR 10	10	6	213.73	174.80
72	XFMR 10	EQD2B	10	6	554.24	369.70
73	EQD2B	V2BA	10	6	271.59	205.71
74	EQD4P	XFMR 11	10	6	294.81	257.18
75	XFMR 11	EQD2P	10	6	1,063.53	608.04
76	EQD2P	EQ1S	140	135	1,864.82	1,913.76
77	EQD2P	EQ2S	125	120	7,074.17	5,185.86
78	EQD2P	EQ3S	110	105	3,441.89	2,717.21
79	EQD2P	EQ3SA	110	105	3,441.89	2,717.21
80	EQD2P	EQ2P	15	10	754.75	528.15

 Table 8.01b
 Compressed Version of Copper and Aluminum Feeder Cost Comparison

Type of Wiring	Total Cost
Copper	\$222,195.49
Aluminum	\$157,434.85

 Table 8.02
 Summary of Total Cost of Copper and Aluminum Feeders

Type of Wiring	Total Cost
Copper	\$203,531.07
Aluminum	\$144,210.32

Table 8.03Summary of Total Cost of Copper and Aluminum FeedersWith Location Factor of 91.6%

Conclusion:

With the potential to save nearly \$60,000, I would recommend that the owner consider using aluminum feeders for this building. When properly installed, an aluminum wiring system provides no additional risk of fire over a comparable copper wiring system. The benefits of this system outweigh any perceived disadvantages to this system.

Protective Device Coordination and Fault Current Study

Overview:

In order to avoid a potential shut-down of an entire wing, or the entire building, it is important to make sure that the protective devices will trip in an appropriate order. I chose to study a basement path: from main switchboard SWB-1 to the distribution panel D4BA to the lighting panelboard L4B.

It is also crucial to analyze the fault current at every point in the system. Panelboards must be able to handle at least the available fault current at their location, so that in the case of a fault current occurring, damage to the equipment is limited and the risk of fire is greatly reduced. I will analyze the path from the main switchboard SWB-1 to the receptacle panel R3SC.

Protective Device Coordination:

The path I am analyzing is from the main switchboard circuit breaker (rated at 1600A), to the distribution panel circuit breaker D4BA (rated at 400A), and finally to the basement lighting panel L4B. Panel L4B is a main lugs only (MLO) panelboard, so the only protective device for the panel is the breaker on panel D4BA.

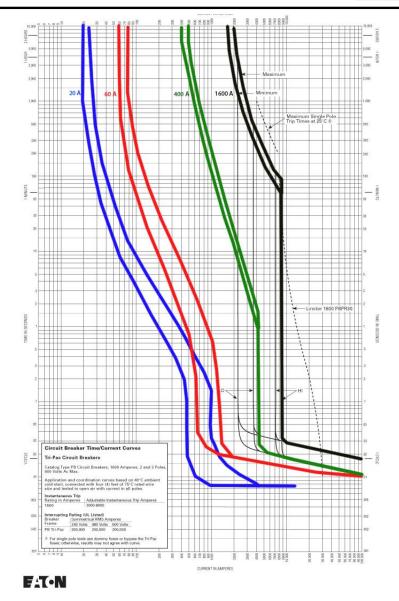


Figure 9.01 Protective Device Coordination – Time-Current Curves for Circuit Breakers

There is a small area of concern here. There is a slight overlap between the maximum trip line for the 20 A branch circuit breaker and the minimum trip line for the 60 A lighting panel breaker. However, judging from the graph above, it is very unlikely that the 60 A would trip before the branch circuit. Therefore, I feel that the protective devices are properly coordinated here, and they will trip in the correct order (branch circuit, lighting panel, distribution panel, switchboard).

Fault Current Analysis:

The path to receptacle panel R3SE started at the main switchboard SWB-1, and goes to the South Bus Duct in the basement. At the third floor, a feeder connects the bus duct to a 112.5 KVA transformer, which transforms the power to 208Y/120 and feeds into distribution panel D23S. D23S then connects to R3SC.

<u>Utility</u>		
KV _{secondary}	0.48	KV
KVA _{utility}	173010	KVA
$\mathbf{Z}_{\text{utility}}$	1.33	$m\Omega$
(X/R) _{utility}	4.8	
R _{utility}	0.27	
X _{utility}	1.30	j

Main Transformer

KV _{secondary}	0.48 KV
KVA _{main xfmr}	1000 KVA
(%Z) _{main xfmr}	5.8
(X/R) _{main xfmr}	2.38
R _{main xfmr}	5.18
X _{main xfmr}	12.32 j

Feeder to South Bus Duct

Size of Phase Wire	350KCMIL
R _{SBD feeder}	3.33
X _{L, SBD feeder}	4.07
Length	240 ft
Number of Sets	2
R _{cond, SBD feeder}	4.00
X _{cond, SBD feeder}	4.88 j

South Bus Duct

Bus Duct Rating	600 A
R _{bus duct}	1.78
X _{bus duct}	2.3
Length	40 ft
R _{south bus duct}	0.71
X _{south bus duct}	0.92 j

Table 9.01a Fault Current Analysis – Impedance Calculations

Feeder to XFMR 6

Size of Phase Wire	3/0AWG
R _{xfmr 6 feeder}	6.68
X _{L, xfmr 6 feeder}	4.22
Length	10 ft
Number of Sets	1
R _{cond, xfmr 6 feeder}	0.67
X _{cond. xfmr 6 feeder}	0.42 j

<u>Transformer 6</u>

KV _{secondary}	0.208 KV
KVA _{xfmr 6}	112.5 KVA
(%Z) _{xfmr 6}	6.1
(X/R) _{xfmr 6}	1.51
R _{xfmr 6}	12.95
X _{xfmr 6}	19.56 j

Feeder to D23S

Size of Phase Wire	600KCMIL
R _{D23S feeder}	2.09
X _{L, D23S feeder}	4.01
Length	10 ft
Number of Sets	1
R _{cond. D23S feeder}	0.21
X _{cond. D23S feeder}	0.40 j

Feeder to R3SC

Size of Phase Wire	4/0AWG
R _{R3SC feeder}	5.34
X _{L, R3SC feeder}	4.14
Length	85 ft
Number of Sets	1
R _{cond, R3SC feeder}	4.54
X _{cond. R3SC feeder}	3.52 ј

 Table 9.01b
 Fault Current Analysis – Impedance Calculations

Point	<u>R</u>	<u>X</u>		<u>I</u> sc
Utility	0.27	1.30	1.331715	20800.2
Main Xfmr Secondary	5.45	13.62	14.67256	18878.78
Tap Box SBD	9.44	18.51	20.77791	13331.47
3rd Floor South Bus Duct	10.16	19.43	21.92207	12635.67
Xfmr 6 Primary	10.82	19.85	22.609	12251.76
Xfmr 6 Secondary	23.78	39.41	46.02542	2607.255
D23S	23.99	39.81	46.47675	2581.936
R3SC	28.52	43.33	51.87479	2313.263

 Table 9.02
 Fault Current Analysis – Short Circuit Current Calculations

The panelboards are all rated for an AIC of 22,000A. Based on this, I can confidently state that the system was properly designed to account for potential fault current.

Acoustics Breadth

Overview:

As part of my re-design of the lecture hall, I elected to re-design the ceiling for the space. As stated earlier, I had two goals for this design: to better work with the overall geometry and furnishings of the lecture hall; and to create an acoustically efficient space. The first goal has been discussed previously. This acoustical breadth will explore the second.

The success of the new ceiling in relation to acoustics will be measured by the following standards:

- Ability to distribute sound to all seating areas of the space
- Ability to maintain reverberation times at appropriate levels
- Contribute to the solution of any sound transmission issues from and to other spaces

Figure 10.01 Lecture Hall Model – Plan View

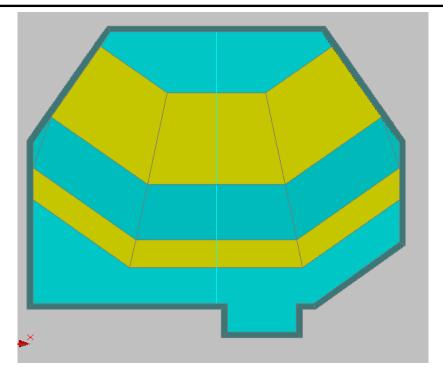
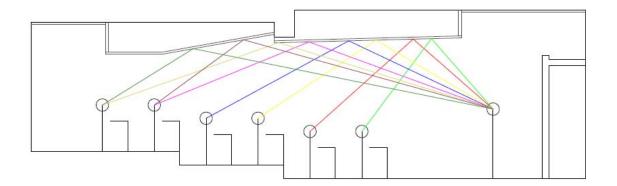


Figure 10.02 Lecture Hall Model – Plan View of Ceiling


Figure 10.03 Preliminary Color Rendering of Lecture Hall – From Speaker

Analysis of Sound Reflection:

This lecture hall has a couple of things working against it acoustically. The height of the space is generally low, which means the slope of any ceiling reflectors can't be too great without risking making the space feel too enclosed. Also as a result of the height restrictions, it's not feasible to raise the height of the stage or further slope the floor to improve the line of sight with the speaker. One of the aspects of the design that is conducive to sound distribution is the seating, which is unfixed. This allows students to essentially "self-stagger" their seating and improve their line of sight with the speaker.

In order for the space to work as optimally as possible, ceiling reflectors have to be oriented so that more sound is reflected to the back of the space. The listeners in the front benefit from being closer to the speaker and from having a less obstructed view, so this is not a critical area for the ceiling to reflect to. Below illustrates how sound is distributed across the space with the new ceiling.

Figure 10.04 Section of Lecture Hall – Proposed Ceiling with Sound Reflection

Overall, the ceiling seems to be distributing sound well to the rear of the classroom. Both sloped sections of the ceiling can reflect sound to the last two rows of seating without interference, which should help the speaker project to the entire space more easily.

Analysis of Sound Absorption:

In order to determine an appropriate material for the new ceiling, I needed to calculate the reverberation time for the space. From these calculations I was then able to determine a range for the sound absorption coefficient for each frequency. The optimal range of reverberation time for this space is 0.7 to 1.1 seconds (AA P&D, p.218).

Frequency (Hz)	Lowest Acceptable α	Highest Acceptable α
500	0.68	1.50
1000	0.26	1.05
2000	0.15	0.50
4000	0.08	0.43

Table 10.01Range of AcceptableSound Absorption Coefficients (α)For Solid Ceiling

Frequency (Hz)	Lowest Acceptable α	Highest Acceptable α
500	0.54	0.98
1000	0.42	0.86
2000	0.30	0.75
4000	0.23	0.66

Table 10.02 Range of Acceptable Sound Absorption Coefficients (α) For Porous/Gapped Ceiling

From this calculation, I found some general materials that would be appropriate for the space, based solely on sound absorption coefficients. These included perforated metal with fiberglass backing, pegboard over fiberglass, and fiberboard. Aesthetically, I feel that the perforated metal will be the strongest in appearance, so I selected this product. A copy of the specifications for this product is available in Appendix C. The ceiling will be considered a solid ceiling, since the insulation for the product helps to cover the perforations from above, and thus doesn't allow enough air through to be considered porous.

Frequency (Hz)	500	1000	2000	4000
Sound Absorp. (α)	0.81	0.85	0.93	0.88
Reverb. Time (sec)	0.65	0.57	0.51	0.50

 Table 10.03
 Sound Absorption Coefficient Data for Perforated Metal Ceiling Material

 And Corresponding Impact on Reverberation Time for Lecture Hall

 Source: Architectural Acoustics – Principles and Design, 1999, p.411

Although the reverberation times are below my desired range of 0.7 to 1.1 seconds, they are still acceptable by most standards (0.5 seconds being the absolute acceptable minimum). They are also relatively close to each other, meaning that ending consonants of words won't reach the listeners before vowels, and vice versa. Speech will be relatively intelligible, and while the room would be considered relatively "flat" for a lecture hall, it would be neither detrimental to the success of lectures nor distracting for listeners. As a result, I have concluded that the new ceiling design meets the criteria for appropriate sound absorption.

Analysis of Airborne Sound Insulation:

The current structural assembly was studied to determine if additional sound insulation would be required to reduce the impact of airborne sound. The target Sound Transmission Class (STC) levels for the lecture hall are as follows:

Area Studied	Nearest Equivalent	Adjacent Area	Nearest Equivalent	Recommended STC
Lecture Hall	Classroom	2nd Floor Laboratory	Laboratory	50
Lecture Hall	Classroom	1st Floor Corridor	Corridor	50

Table 10.04Recommended STC Values for Selected OccupanciesSource: Architectural Acoustics – Principles and Design, 1999, p.176

Testing in a laboratory setting of a 6" solid concrete slab revealed a STC of 56 (AAP&D, p.420). The concrete slab over the lecture hall is actually a 6-1/2" composite deck. Since it can be assumed that the addition of 1/2" of concrete and metal decking will only improve the sound insulation, I can conclude the current assembly will easily meet the STC standard between the 2^{nd} floor laboratory and the Lecture Hall.

Testing of a standardized metal stud assembly (5/8" gypsum board on each side, 3 5/8" studs 24" o.c., 2" fiberglass insulation) results in a STC of 51 (AAP&D, p.414). The only area that would not have a similar assembly to the above is the door. That said, the vestibule at this entry should create enough of a barrier to meet the criteria. Again, no changes need to be made to the current assemblies to meet STC criteria.

Analysis of Structure-Borne Sound Insulation:

The current structural assembly was studied to determine if additional sound insulation would be required to reduce the impact of structure-borne sound. The target Impact Insulation Class (IIC) between the Lecture Hall and the 2nd Floor Laboratory is 50.

For a typical VCT floor assembly, the IIC is only 34. Therefore, I am recommending that the vinyl composite tiles above the lecture hall be replaced with a more sound-insulating material: cork. Besides being a better acoustical insulator, the cork offers thermal and moisture insulation, and when properly sealed, cork is durable enough to meet the usage needs of the lab environment. In addition, cork is a rapidly renewable resource, making it a better choice for the environment as a whole. A floor assembly with cork floor tiles, 8" concrete slab, and dropped ceiling has an IIC of 73. Even taking into consideration that there is only a 6 ½" slab, the IIC would still remain over 50. With this simple change, the space now meets recommended criteria for structural-borne sound insulation. A cutsheet for a suitable cork flooring option is available in Appendix C.

Mechanical Breadth

Overview:

The original air distribution system for the lecture hall had diffusers mounted in the vertical sections of a cove system that also served as a lighting element. As part of my redesign of the lecture hall, these coves were removed; therefore, it became necessary to create a new layout for these diffusers. In keeping with the lighting design and new ceiling for the room, I would like to analyze using linear diffusers throughout. This will allow me to use a slimmer, more minimally invasive diffuser width. Care also needs to be taken to make sure the acoustics of the space aren't negatively impacted by the re-design.

Details of Existing Air Distribution to Be Retained:

There are four VAV boxes with reheat capabilities servicing the lecture hall. Two on the northern portion of the room are served by one air-handling unit, the southern two VAV boxes by another. Each VAV handles a minimum of 500 cfm of air and a maximum of 1000 cfm, for a total maximum of 4000 cfm for the room. I am assuming that the original space was properly designed for ventilation in line with ASHRAE 62.1-2007. The VAV boxes and all duct work (with the exception of those leading directly to the diffusers) are well above the new ceiling, and thus have not been affected by the new ceiling. Therefore, I am proposing no changes to the bulk of the existing air distribution system.

Standards to Adhere to For New Diffuser Layout:

One of my goals is to make the diffusers layout as slender as possible. However, as the area of the diffuser goes down, the velocity of the air goes up, and a concern is that if the diffuser area is too small, there could be too much draft in the space. The threshold for acceptable air velocity out of the diffusers to avoid this draft is 500 ft/min, and my goal is to be well under that. In addition, the diffuser system as a whole must be able to handle at least 4000 cfm of air.

Description of New Layout:

In most of the lecture hall, it's not going to be possible to do vertically oriented diffusers, as they are in the original design. However, in the very front and very back of the room, there is enough vertical distance to comfortably lay in diffusers, and this will allow good ventilation throw in the front speaker area as well as all three exit areas. There will be one row of linear diffusers over the center of the seating area. These diffusers will be aligned with the new ceilings. Since the pitch is only slightly off from horizontal, I don't anticipate any greatly uneven conditions parts of the lecture hall as a result of the ceiling design.

New Layout Drawings:

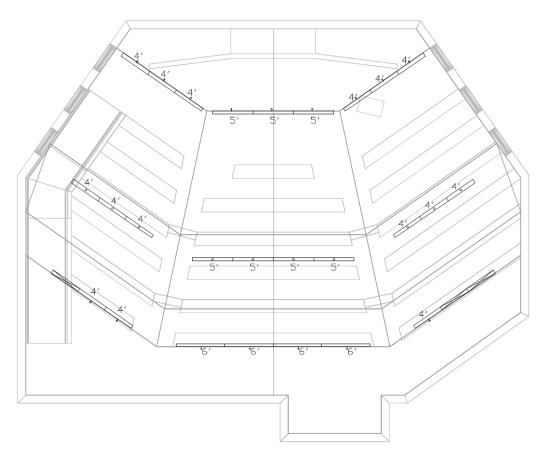


Figure 11.01 Lecture Hall Reflected Ceiling Plan – Diffusers Only

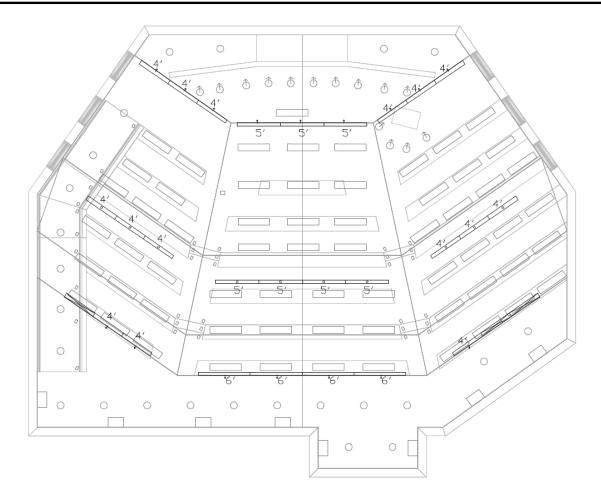


Figure 11.02 Lecture Hall Reflected Ceiling Plan – Diffusers and Lighting

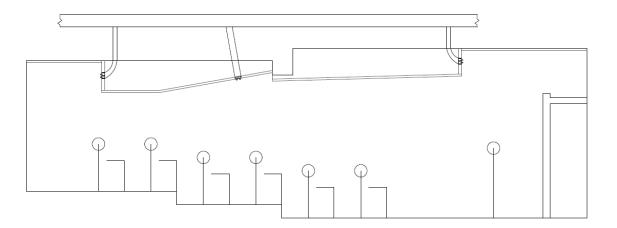


Figure 11.03 Lecture Hall Section – Diffusers and Schematic of Air Distribution System

Calculations:

Dow		Left			Center		Right				
Row	Quantity	Length	Total	Quantity	Length	Total	Quantity	Length	Total		
1	2	4	8	3	5 15		1	4	4		
2	3	4	12	4	5	20	3	4	12		
3	3	4	12	4	6	24	3	4	12		

Total Length of Diffusers: 119 feet

Additional Length of Grill:	12 feet

 Table 11.01
 Take-Off of Diffusers – Total Length Used in Lecture Hall

Calculation	<u>Quantity</u>
Length of Diffusers	119'
Slot Diffuser Width	1"
Number of Slots	2
Maximum Air Flow	4000 cfm
Minimum Air Flow Required	33.61 cfm/ft
Air Flow Selected	40 cfm/ft
Air Flow Area	19.83 ft ²
Velocity of Air	201.68 ft/min
Minimum Air Flow	2000 cfm
Velocity of Air	100.84 ft/min

 Table 11.02
 Air Velocity Calculations – Lecture Hall Diffusers

Based on the above calculations, a diffuser with 2" of usable air flow width will have no problems limiting the air velocity to well under 500 ft/min, thus avoiding a draft issue. The diffusers must be able to handle around 34 cfm of air per foot of diffuser, and since they have been sized at 40 cfm, that is also not an issue. A cutsheet for the diffusers selected is included in Appendix C.

Acoustical Considerations:

A couple of locations will have the grill face of the diffuser, but no air flow connected to it. This is because of their proximity to the return air ducts. Because they are so close, most of the supply air here would simply flow into the return air, which is not only wasteful, but could cause some distracting noise in the space. With select diffusing sections removed, this becomes much less of an issue. The supply air system already has some acoustical duct silencers on it, so nothing else needs to be added. Overall, the layout as designed should not be detrimental to the acoustical quality of the space.

Conclusions:

The linear diffuser system seems to be a good choice for this new ceiling. Since the equipment used is comparable to the equipment used in the original layout, the cost of the air distribution system has not been greatly increased as a result of the new ceiling system. The layout works well with the lighting and the architectural design of the space. So long as there is proper coordination between the mechanical, electrical, and ceiling contractors, I feel this new ceiling will have a positive impact on the lecture hall.

Summary and Conclusions

As a whole, the Barshinger Life Sciences and Philosophy functions as the signature building it was designed to be. The exterior's traditional appeal and the interior's modern functionality make it a strong standard for new buildings at Franklin & Marshall College. Throughout this process, I tried to keep in line with this philosophy, and show that when done properly, traditional and modern elements can co-exist, as can good aesthetic quality and high functionality.

The East Entry's use of light here is less traditional, but because it is a modern way of showing off the building's traditional elements, it does not look like a clash of styles. The functionally of this layout is the control of the light, focused on the tasks at hand rather than general ambience. As a result, this layout reduced light trespass and pollution, and also managed to stay under the energy budget. The Atrium is a standout space on its own, and the generous window areas allow a ton of daylight to penetrate and dramatize the space. What it needed was a simple focal point, and just enough light to make egress easier and the space usable for 24 hours a day. The simple discs of luminous glass draw attention without being intrusive, and the time clock allows for three different life schemes to allow for maximum usability and energy efficiency.

The Ecology Teaching Lab used a task-oriented approach to great success, putting lighting only where is needed to be. More than enough light reflected to the ground for egress, and an efficient switching layout allows the space to conserve even more energy in an already-conscious design. The Bonchek Lecture Hall is transformed with a new ceiling that adds interest and some volume, and the new lighting design shows off the new shape well. The four-scene control makes this space as multi-purpose as it wants and needs to be. As a whole, the four lighting designs did very well in sticking to their energy budget. The Atrium on its own exceeded the energy allowances, but using the extra 200W of energy saved in the laboratory, the building as a whole was able to meet ASHRAE 90.1 – 2004.

Study on the electrical breadth shows me a lot of the reasoning behind the original design. The branch circuits and lighting panels all remained relatively unaffected, and the protective device coordination study and fault current analysis showed that the system components were properly selected. The original choice of distributed transformers was a far more economical choice than a central one. The only place I found a great opportunity for savings was a proper installation of aluminum feeders, in place of the more expensive copper. Acoustically, the lecture hall is a sound design, and the new mechanical layout is able to work well in the new ceiling. The results of all of this are an efficient and functional design that allows the character of the building to come through and complements the elements of this building that have made and should make Franklin & Marshall College proud.

References

ASHRAE 90.1-2004. "Energy Standards for Building Except Low-Rise Residential

Buildings." ASHRAE, 2004.

Hughes, David S. <u>Electrical Systems in Buildings</u>. 1988.

Kooiman, Brent. "Aluminum vs. Copper Conductors - A Serious Alternative?" Interstates

Engineering (2006).

Mehta, Madan, Jim Johnson, and Jorge Rocafort. Architectural Acoustics - Principles and

Design. 1999.

National Electric Code. NFPA 70, 2005.

Rea, Mark S., ed. <u>The IESNA Lighting Handbook</u>. 9th ed. Illuminating Engineering Society of North America, 2000.

RS Means Electrical Cost Data. 2008.

Acknowledgements

There are many people I would like to thank for their incredible support during the journey that my thesis project (and my college career for that matter) has been.

-Holly Green of Turner Construction, for being an extremely valuable resource for information throughout the process, and for being patient enough to give me a tour of the building after completion;

-Bill Swanson of Turner Construction, for helping to start up the thesis process and for giving me a tour of the building during the final phases of construction;

-William Brennan and Kathleen McCartney of Turner Construction, for awarding me this thesis project, which took a load of pressure off of me going into my fifth year;

-Franklin & Marshall College, for granting me permission to use their new signature building as my thesis project;

-Corinne Ronemus of PP & L Electric Company, Terry Withers of H. B. Frazer Company, and Dee Shellenberger of Turner Construction, for their help in gathering critical information for this project;

-Dr. Mistrick, for his advice and insight, not only for the Lighting Depth of this thesis, but also throughout my time in the Lighting/Electrical option;

-Prof. Dannerth, for being a fantastic resource for the Electrical Depth portion of this thesis;

-Prof. Ling (Moses), for his great support for the Acoustical and Mechanical Breadths of this thesis, for allowing me the opportunity to study abroad in England, for being a great resource and person to talk to over the years, and for too many other reasons to list all here;

-Dr. Srebric, for being a great advisor and listener for me throughout my entire college career (and if I end up in graduate school later in life, she'll be a big reason why);

-Profs. Parfitt and Holland, for helping with various breadth ideas and for all of the thesis administration stuff that we didn't have to do;

-Charles Stone, Luke Tigue, and all of the other designers at the Lutron Presentations for their helpful and constructive (albeit brutally honest) criticism, and all of the members of the Lighting/Electrical mentor boards for their support of me and all of the students;

-The entire staff of Sylvan R. Shemitz Designs, and especially Zach Zaharewicz, for allowing me to work with them for three summers, and gain a lot of experience and confidence in my work;

-My family and friends, for their love and support throughout everything;

-And last, but certainly not least, the AE Senior Class of 2008, for their comradery at all hours of the day and night, and for some of the best moments of my college career!

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING FRANKLIN & MARSHALL COLLEGE LANCASTER, PA

5. Bonchek Lecture Hall

11

11

13

13

19 20

21

21

21

22

23

24

25

29

29

30

30

34

35

35

36 36

37

37

42

43

44

45

46

46

47

47 48

48

49

49

52

53

53

59

60

61

62

62

63

63 64

Index of Figures

1. Lighting Depth

	5 cpm
Figure 1.01	First Floor Plan - Life Sciences & Philosophy Building
Figure 1.02	Second Floor Plan - Life Sciences & Philosophy Building
	y and Façade
Figure 2.01	East Elevation – Life Sciences & Philosophy Building
Figure 2.02	Exterior Section – Life Sciences & Philosophy Building
Figure 2.03	East Entry and Façade Lighting Plan – South of Entry
Figure 2.04	East Entry and Façade Lighting Plan - South Side of Entry
Figure 2.05	Pediment Lighting Layout - Fixture QQ4
Figure 2.06	Mounting Detail – Fixture QQ4
Figure 2.07	Mounting Detail – Fixture QQ2
Figure 2.08	East Entry and Façade - Plan of AGI Model with Footcandle Isolines
Figure 2.09	East Entry and Façade Rendering - View from Stadium
Figure 2.10	East Entry and Façade Rendering - Looking North on Path
Figure 2.11	East Entry and Façade Rendering – Main Entrance
3. Frey Atri	um
Figure 3.01	First Floor Plan - Atrium
Figure 3.02	East to West Section - Atrium
Figure 3.03	North to South Section - Atrium
Figure 3.04	West Elevation - Atrium
Figure 3.05	Rendering of Atrium - March 21st, Overcast Sky, 10:00 AM
Figure 3.06	Rendering of Atrium - March 21st, Clear Sky, 8:30 AM
Figure 3.07	Rendering of Atrium – March 21 st , Clear Sky, 12:00 PM
Figure 3.08	Rendering of Atrium - December 22nd, Clear Sky, 8:30 AM
Figure 3.09	Rendering of Atrium - December 22nd, Clear Sky, 12:00 PM
Figure 3.10	Rendering of Atrium - June 22nd, Clear Sky, 8:30 AM
Figure 3.11	Rendering of Atrium - June 22nd, Clear Sky, 12:00 PM
Figure 3.12	Atrium Lighting Plan - First Floor
	Atrium Lighting Plan – Second Floor
Figure 3.14	Atrium Lighting Plan - Third Floor
	Custom Pendant for Atrium (Type SS4) - Plan
Figure 3.16	Custom Pendant for Atrium (Type SS4) - Elevation
Figure 3.17	Custom Pendant for Atrium (Type SS4) - Rendered Image
	Atrium - Plan of AGI Model with Calculation Grid
	Pseudocolor Rendering of Atrium - Facing South
	Color Rendering of Atrium – Facing North
Figure 3.21	Color Rendering of Atrium - From Main Entry
	Color Rendering of Atrium - From Balcony
-	Color Rendering of Atrium - Ceiling and Custom Pendant
-	eaching Lab
	Second Floor Plan – Ecology Teaching Lab
Figure 4.02	North Elevation - Ecology Teaching Lab
	West Elevation - Ecology Teaching Lab
	Lighting Plan - Ecology Teaching Lab
	Switching Option #1 – Ecology Teaching Lab
-	Switching Option #2 – Ecology Teaching Lab
-	Ecology Teaching Lab – Plan of AGI Model with Footcandle Isolines
-	Ecology Teaching Lab – Elevation of Chalkboard with Calculation Grid
	Ecology Teaching Lab – Elevation of Lecture Area with Calculation Grid
	Pseudocolor Rendering of Ecology Teaching Lab – From Entrance
	Color Rendering of Ecology Teaching Lab – From Entrance
	Color Rendering of Ecology Teaching Lab – From Back Workstation
3	5, w 6

Figure 5.01 First Floor Plan - Lecture Hall 67 Figure 5.02 North to South Section - Lecture Hall 68 Figure 5.03 West Elevation – Lecture Hall 68 72 72 Figure 5.04 Section of Lecture Hall - Original Cove Ceiling Figure 5.05 Section of Lecture Hall – Proposed Ceiling Reflectors Figure 5.06 Lecture Hall Model - Plan View 73 Figure 5.07 Lecture Hall Model - Plan View of Ceiling 73 Figure 5.08 Lecture Hall - Simplified Section of Vierendell Truss with Measurements 76 Figure 5.09 Lighting Plan – Lecture Hall 76 Figure 5.10 Lecture Hall – Illuminance on Desks During "LECTURE" Scene 82 Figure 5.11 Lecture Hall – Illuminance on Ramp During "LECTURE" Scene 82 Figure 5.12 Lecture Hall - Illuminance on Projection Screen During "LECTURE" Scene 83 Figure 5.13 Lecture Hall – Illuminance on Speaker During "LECTURE" Scene 83 Figure 5.14 Lecture Hall - Illuminance on Desks During "A/V" Scene 84 Figure 5.15 Lecture Hall – Illuminance on Projection Screen During "A/V" Scene 85 Figure 5.16 Lecture Hall – Illuminance on Ramp During "A/V" Scene 85 Figure 5.17 Color Rendering of Lecture Hall From Back Row Seating - "LECTURE" Scene 86 Figure 5.18 Color Rendering of Lecture Hall From Speaker - "LECTURE" Scene 86 Figure 5.19 Color Rendering of Lecture Hall From Back Row Seating - "A/V" Scene 87 Figure 5.20 Color Rendering of Lecture Hall From Speaker - "A.V" Scene 87 Figure 5.21 Color Rendering of Lecture Hall From Back Row Seating - "MOVIE" Scene 88 Figure 5.22 Color Rendering of Lecture Hall From Speaker - "MOVIE" Scene 88 Figure 5.23 Color Rendering of Lecture Hall From Back Row Seating - "MAINTENANCE" Scene 89 Figure 5.24 Color Rendering of Lecture Hall From Speaker - "MAINTENANCE" Scene 89 6. Circuits Affected By Lighting Design Figure 6.01 First Floor Circuiting Plan for East Entry and Façade - South Of Entrance 93 Figure 6.02 First Floor Circuiting Plan for East Entry and Façade - North Of Entrance 94 Figure 6.03 Second Floor Circuiting Plan - East Entry and Façade 95 Figure 6.04 First Floor Circuiting Plan - Atrium 95 Figure 6.05 Second Floor Circuiting Plan - Atrium 96 Figure 6.06 Third Floor Circuiting Plan - Atrium 96 Figure 6.07 Second Floor Circuiting Plan - Ecology Teaching Lab 97 Figure 6.08 First Floor Circuiting Plan - Lecture Hall 98 7. Central vs. Distributed Transformers Figure 7.01 Riser Diagram of Main Electrical Room – Existing System 131 Figure 7.02 Riser Diagram of Main Electrical Room – Proposed System 131 Figure 7.03 Riser Diagram of South Electrical Room - Existing System 132 Figure 7.04 Riser Diagram of South Electrical Room - Proposed System 132 8. Aluminum vs. Copper Feeders none 9. Protective Device Coordination and Fault Analysis Study Figure 9.01 Protective Device Coordination - Time-Current Curves for Circuit Breakers 139 10. Acoustics Breadth Figure 10.01 Lecture Hall Model – Plan View 143 Figure 10.02 Lecture Hall Model – Plan View of Ceiling 144 Figure 10.03 Preliminary Color Rendering of Lecture Hall - From Speaker 144 Figure 10.04 Section of Lecture Hall - Proposed Ceiling with Sound Reflection 145 11. Mechanical Breadth Figure 11.01 Lecture Hall Reflected Ceiling Plan - Diffusers Only 149 Figure 11.02 Lecture Hall Reflected Ceiling Plan – Diffusers and Lighting 150 Figure 11.03 Lecture Hall Section - Diffusers and Schematic of Air Distribution System 150

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING FRANKLIN & MARSHALL COLLEGE LANCASTER, PA

Index of Tables

1. Lighting	Depth		6. Circuits Affected By Lighting Design	
none		-	Table 6.01 Existing Panelboard Schedule – Lighting Panel L4B	99
2. East Ent	ry and Façade		Table 6.02 Revised Panelboard Schedule – Lighting Panel L4B	100
Table 2.01	Surface Characteristics - Exterior and Façade	14	Table 6.03 Voltage Drop Calculation – Feeder for Lighting Panel L4B	101
Table 2.02	Compressed Luminaire Schedule for Exterior and Façade	16	Table 6.04 Existing Panelboard Schedule – Lighting Panel L1NA	102
Table 2.03	Compressed Ballast Schedule for Exterior and Façade	18	Table 6.05 Revised Panelboard Schedule – Lighting Panel L1NA	103
Table 2.04	Light Loss Factors for Exterior and Facade	18	Table 6.06 Voltage Drop Calculation – Feeder for Lighting Panel L1NA	104
Table 2.05	Power Allowances for Exterior Tradable Areas	26	Table 6.07 Existing Panelboard Schedule – Lighting Panel L1SA	105
Table 2.06	Power Consumed by Exterior Tradable Areas	26	Table 6.08 Revised Panelboard Schedule – Lighting Panel L1SA	106
Table 2.07	Power Allowance for Façade (Non-Tradable)	27	Table 6.09 Voltage Drop Calculation – Feeder for Lighting Panel L1SA	107
Table 2.08	Power Consumed by Façade	27	Table 6.10 Existing Panelboard Schedule – Lighting Panel L2NA	108
3. Frey Atri	ium		Table 6.11 Revised Panelboard Schedule – Lighting Panel L2NA	109
Table 3.01	Surface Characteristics - Atrium	31	Table 6.12 Voltage Drop Calculation – Feeder for Lighting Panel L2NA	110
Table 3.02	Daylight Elements - Atrium	31	Table 6.13 Existing Panelboard Schedule – Lighting Panel L2SA	111
Table 3.03	Compiled Data from Atrium Daylight Study	38	Table 6.14 Revised Panelboard Schedule – Lighting Panel L2SA	112
Table 3.04	Compressed Luminaire Schedule for Atrium	39	Table 6.15 Voltage Drop Calculation – Feeder for Lighting Panel L2SA	113
Table 3.05	Compressed Ballast Schedule for Atrium	40	Table 6.16 Existing Panelboard Schedule – Lighting Panel L3SA	114
Table 3.06	Light Loss Factors for Exterior and Facade	40	Table 6.17 Revised Panelboard Schedule – Lighting Panel L3SA	115
Table 3.07	Mounting Details for Atrium - First Floor	42	Table 6.18 Voltage Drop Calculation – Feeder for Lighting Panel L3SA	116
Table 3.08	Mounting Details for Atrium – Second Floor	43	Table 6.19 Existing Panelboard Schedule – Lighting Panel E4B	117
Table 3.09	Mounting Details for Atrium – Third Floor	44	Table 6.20 Revised Panelboard Schedule – Lighting Panel E4B	118
Table 3.10	Power Allowance for Atrium – Functional Lighting	50	Table 6.21 Voltage Drop Calculation – Feeder for Dimming Panel E4B	119
Table 3.11	Power Consumed by Atrium – Functional Lighting	50	Table 6.22 Existing Panelboard Schedule – Lighting Panel E4P	120
Table 3.12	Power Allowance for Atrium – Decorative Lighting	51	Table 6.23 Revised Panelboard Schedule – Lighting Panel E4P	121
Table 3.13	Power Consumed by Atrium - Decorative Lighting	51	Table 6.24 Voltage Drop Calculation – Feeder for Dimming Panel E4P	122
4. Ecology	Teaching Lab		Table 6.25 Existing Panelboard Schedule – Lighting Panel DM4P	123
Table 4.01	Surface Characteristics – Ecology Lab	54	Table 6.26 Revised Panelboard Schedule – Lighting Panel DM4P	124
Table 4.02	Daylight Elements – Ecology Lab	54	Table 6.27 Voltage Drop Calculation – Feeder for Dimming Panel DM4P	125
Table 4.03	Compressed Luminaire Schedule for Ecology Teaching Lab	57	Table 6.28 Existing Panelboard Schedule – Lighting Panel EDM4P	126
Table 4.04	Compressed Ballast Schedule for Ecology Teaching Lab	58	Table 6.29 Revised Panelboard Schedule – Lighting Panel EDM4P	127
Table 4.05	Light Loss Factors for Ecology Teaching Lab	58	Table 6.30 Voltage Drop Calculation – Feeder for Dimming Panel EDM4P	128
Table 4.06	Power Allowance for Ecology Lab	66	7. Central vs. Distributed Transformers	
Table 4.07	Power Consumed by Ecology Lab	66	Table 7.01 Details for Existing Transformers to be Combined	129
5. Bonchek	Lecture Hall		Table 7.02 Details for Proposed Central Transformer	129
Table 5.01	Surface Characteristics – Lecture Hall	69	Table 7.03 Cost Analysis for Central and Distributed Transformer Systems	133
Table 5.02	Daylight Elements – Lecture Hall	69	8. Aluminum vs. Copper Feeders	
Table 5.03	Compressed Luminaire Schedule for Lecture Hall	74	Table 8.01a Compressed Version of Copper and Aluminum Feeder Cost Comparison	135
Table 5.04	Compressed Ballast Schedule for Lecture Hall	75	Table 8.01b Compressed Version of Copper and Aluminum Feeder Cost Comparison	136
Table 5.05	Light Loss Factors for Lecture Hall	75	Table 8.02 Summary of Total Cost of Copper and Aluminum Feeders	137
Table 5.06	Lecture Hall Dimming System – Zone Layout	77	Table 8.03 Summary of Total Cost of Copper and Aluminum Feeders with Location Factor	137
Table 5.07	Lecture Hall Dimming System - Zone Output Levels for "LECTURE" Scene	78	9. Protective Device Coordination and Fault Analysis Study	
Table 5.08	Lecture Hall Dimming System - Zone Output Levels for "A/V" Scene	79	Table 9.01a Fault Current Analysis – Impedance Calculations	140
Table 5.09	Lecture Hall Dimming System - Zone Output Levels for "MOVIE" Scene	80	Table 9.01b Fault Current Analysis – Impedance Calculations	141
Table 5.10	Lecture Hall Dimming System – Zone Output Levels for "MAINTENANCE" Scene	81	Table 9.02 Fault Current Analysis – Short Circuit Current Calculations	142
Table 5.11	Power Allowance for Lecture Hall	90	10. Acoustics Breadth	
Table 5.12	Power Consumed by Lecture Hall	90	Table 10.01 Range of Acceptable Sound Absorption Coefficients for Solid Ceiling	146
			Table 10.02 Range of Acceptable Sound Absorption Coefficients for Porous/Gapped Ceiling	146
			Table 10.03 Sound Absorption Coefficient Data for Perforated Metal and Impact on Reverberation Time	146
			Table 10.04 Recommended STC Values for Selected Occupancies	147
			11. Mechanical Breadth	

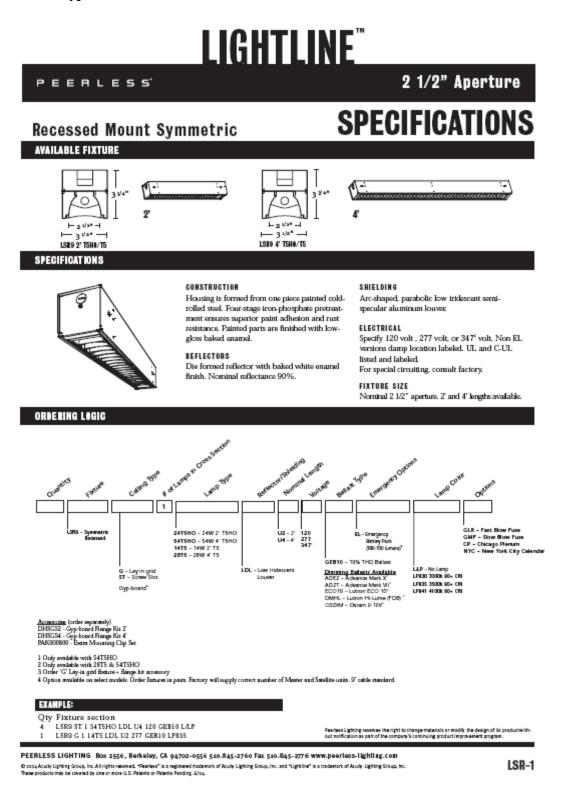
 Table 11.01
 Take-Off of Diffusers – Total Length Used in Lecture Hall

 Table 11.02
 Air Velocity Calculations – Lecture Hall Diffusers

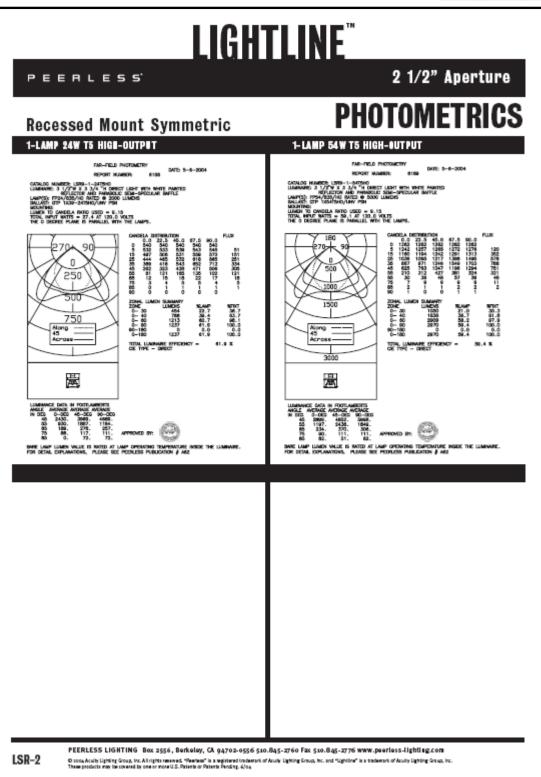
151 151

Appendix A Lighting Depth Supplemental Information

Full Luminaire Schedule	159
Luminaire Details (Luminaire, Lamp, and Ballast Cutsheets)	
Type PP1	160
Type PP2	164
Type PP3	168
Type PP4	172
Type PP5	173
Type QQ1	177
Type QQ2	180
Type QQ3	183
Type QQ4	186
Type QQ5	190
Type RR1	193
Type RR2	198
Type RR3	202
Type SS1	206
Type SS2	210
Type SS3	214
Type SS5	218
Cutsheet for Time Clock Controller	222
Access Information for Modeling Files	223



Full Luminaire Schedule


<u>Label</u>	Quantity	<u>Manufacturer</u>	<u>Catalog #</u>	Description	<u>Number</u> <u>of</u> <u>Lamps</u>	<u>Linear Feet</u> / Luminaire	<u>Lamp Type</u>	CCT	<u>CRI</u>	<u>Voltage</u>	<u>Watts /</u> Lamp	<u>Watts /</u> <u>Linear</u> <u>Foot</u>	<u>Total</u> <u>Luminaire</u> <u>Watts</u>	<u>Ballast</u> <u>Watts</u>	<u>Driver</u> <u>Watts</u>	Power <u>Factor</u>	<u>Ballast</u> <u>Factor</u>	<u>Amps</u>
PP1	62	Peerless	LSR9-LDL-	Recessed linear fluorescent downlight	-	4	T5	3000K	85	277	150	-	28	29	-	0.98	1.00	0.11
PP2	14	Iris	PN7-M42T-E7TWW-C	Recessed compact fluorescent wall washer	1	-	42W CFL TRT	3000K	82	277	39	-	42	47	-	0.99	1.00	0.17
PP3	24	Iris	P5-M32T-E5T-C	Recessed compact fluorescent downlight	1	-	26W CFL TRT	3000K	82	277	26	-	26	31	-	0.98	1.05	0.11
PP4	33	Erco	0-04-E-3K-90-102-2-(36'-0")-2	Floor recessed LED uplight for ramp and stairs	1	-	LED	3500K	-	277	-	12	3.6	-	4.212	1.00	-	0.02
PP5	8	Shaper	673-25-T5/1/14-277V-PB-2VPTB	Luminous wall sconce with brass trim	-	2	Т5	3000K	85	277	-	7	14	19	-	0.98	1.05	0.07
QQ1	6	Holophane	GVP-15DMH-27-M-B-8-R-S-B	Street "acorn" pole fixture with internal reflector to meet "Cutoff" criteria	1	-	150W MH	4200K	88	277	150	-	150	173	-	0.90	-	0.69
QQ2	6	B-K Lighting	SE-60-WHW-9-11-A-RM35-277	Wall-mounted HID projector with 10 degree beam spread and 45 degree shielding	1	-	39W PAR30L MH	3000K	81	277	39	-	39	45	-	0.95	-	0.17
QQ3	2	Erco	81030.000 HIT-CE 70W G12	Recessed exterior HID downlight	1	-	70W CMH	3000K	83	277	70	-	70	79	-	0.90	-	0.32
QQ4A	1	Io	0-04-E-3K-90-102-2-(36'-0")-2	Linear LED floodlight luminaire with asymmetric optics	-	36	LED	3000K	-	277	-	12	432	-	505.44	1.00	-	1.82
QQ4B	2	Io	0-04-E-3K-90-102-2-(19'-6")-2	Linear LED floodlight luminaire with asymmetric optics	-	19.5	LED	3000K	-	277	-	12	234	-	280.8	1.00	-	1.01
QQ5	2	Holophane	MGV-39EMH-27-S-B-5-2-B	Exterior wall-mounted acorn fixture at smaller scale to pole fixture	1	-	39W PAR30L MH	3000K	81	277	39	-	39	45	-	0.95	-	0.17
RR1	23	Zumtobel	GVP-15DMH-27-M-B-8-R-S-B	Recessed direct-indirect LTT luminiare with louvers and white reflector	1	-	40W LTT	3000K	82	277	40	-	40	40	-	0.90	1.00	0.16
RR2	9	Neoray	81-R-1-T8-ETG-2-EB-SI	Recessed T8 fluorescent downlight with parabolic louver	1	-	32W T8	3000K	78	277	32	-	32	34	-	0.98	0.90	0.13
RR3	6	Litecontrol	W-ADW-66N28T8-BW-CWM-ELB-WCB-277	Surface mounted T8 chalkboard light	1	-	32W T8	3000K	78	277	32	-	32	34	-	0.98	0.90	0.13
SS1	34	Iris	P5-M32T-E5T-C	Recessed compact fluorescent downlight	1	-	32W CFL TRT	3000K	82	277	32	-	32	36	-	0.98	0.98	0.13
SS2	14	Iris	P406TAT-MH4CFL-42E-E4DL-BH	Recessed square downlight	1	-	32W CFL TRT	3000K	82	277	32	-	32	36	-	0.98	0.98	0.13
SS3	14	Shaper	673-25-T5/1/14-277V-PB-2VPTB	Luminous wall sconce with brass trim	-	2	T5	3000K	85	277	-	7	14	19	-	0.98	1.05	0.07
SS4	1	Custom	Custom	Decorative pendant with 4 luminuous glass discs and brass trim	4	-	42W TRT CFL	3000K	82	277	42	-	168	184	-	0.98	0.98	0.68
SS5	1	elliptipar	F140-T221-X-02-2-000	Oval-shaped low profile linear wallwasher	-	6	Т5	3000K	85	277	-	7	42	48	-	0.98	1.02	0.18

Luminaire Type PP1 – Luminaire Cutsheet

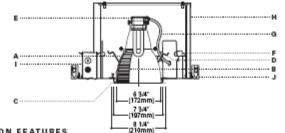
Luminaire Type PP1 – Lamp Information

WORLDWIDE PARTNER		Commercial Products & Solution
SITE SEARCH	HOME *	PRODUCTS + EDUCATION / RESOURCES + LIGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteN
Products > Linear Fluorescent :	 Straight Linear > 21 - 301 	Watts > 46704
- Todatado - Enicar Franciscoscilia -		11110 - 40104
46704 – F28W/T5/830/E GE Ecolux® Starcoat® T5	со	PRINT
Passes TCLP, which can lowe	er disposal costs.	
🖉 High Color Rendering		
GENERAL CHARACTERISTIC	\$	3
Lamp type	Linear Fluorescent -	
Bulb	Straight Linear	
Bulb Base	T5 Miniature BI-Pin (G5)	
Wattage	28	Bulb Base
Voltage	167	bub base
Rated Life	30000 hrs	
Rated Life (rapid start) @ Time	30000 h @ 3 h 36000 h @ 12 h	d_
Bulb Material	Soda lime	View Larger
Starting Temperature (MIN)	-20 °C (-4 °F)	
Additional Info	TCLP compliant	ADDITIONAL RESOURCES
PHOTOMETRIC CHARACTER	NETICE	Catalogs
Initial Lumens	2900	Testimoniais
Mean Lumens	2560	Application/Segment Brochures
Nominal Initial Lumens per	103	Contractor Lighting
Watt	100	<u>Healthcare Lighting</u> Product Brochures
Color Temperature	3000 K	 Ecolux
Color Rendering Index (CRI)	85	Ecolux (Environmental) Dispessi Relicion - Rescultor Information
S/P Ratio (Scotopic/Photopic Ratio)	1.3	Disposal Policies & Recycling Information
ELECTRICAL CHARACTERIS	TICS	GRAPHS & CHARTS Spectral Power Distribution
Open Circuit Voltage (rapid start) Min @ Temperature	425 V @ 10 °C	160 COLOR DE LOS
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25	
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5	
Current Crest Factor (MAX)	1.7	
DIMENSIONS		
Maximum Overall Length (MOL)	45.8000 In (1163.3 mm)	
Nominal Length	45.200 in (1148.0 mm)	ade ase ase ase son son son son red 756 Wevelength (nen)
Bulb Dlameter (DIA)	0.625 In (15.8 mm)	Lamp Mortality
Bulb Diameter (DIA) (MAX)	0.670 ln (17.0 mm)	Lamp moreany

Luminaire Type PP1 – Ballast Information

Product Line Guide - Electronic Ballasts

ltern Humber	OSRAM SYLVANIA Description	inpirt Voltage (VAC)	input Current (AMPS)	Lump Type	Rated Lumens (imi)	Ho. of Lamps	Ballast Fector (BF)	System Lunions	lupet Wettago (W)	System Efficer (In:/V
QUICK	TRONIC+ PROFESSIONA	L PROBLA	nte COMPA		ENT - UI	NIVER8A	L VOLT	GE DUAL		
			NORM	AL BALLAST	FACTOR					
51818 o 51820 o	OTP 1/2x13CF/UWV OTP 1/2x12CF/UWV	- 128-277	0.25/0.11	13W DKVE,T/E 13W DKVE,T/E	988	12	1.88 1.88	988 1800	16 29	56 62
51823 0	OTP 1/2x18CE/UW	, 	64010.11	1EW DC/E,T/E	1200	1	1.88	1200		60
5(2)0	CT2122-CE2001-ST ▲	128-277	0.32/0.14	16W DC/E,T/E	1200	ż	1.00	2400	20 39	63
51833 e	OTP 2x260F/UW		0.50/0.22	26W DO/E,T/E 26W DO/E,T/E	1800 1800	12	1.00	1800 3600	28 54 35	64 67
54 222 O 51896	GTP2±25GF0NI-ATT ▲ GTP2x25GF/UNV PEN	- 128-277		32W DT/E 42W DT/E	2400 3200	1	0.98	2950 3200	35 45	67 71
		1		26W DT/E	1800		1.02	3670	54	68
51843	0TP 2x26/32/420F/UWV M		0.0000.40	32W DT/E	2400	2	0.96	4600	69	67
51263 O	OTP 2x28/22/42/0F/UNV M-RAT & OTP 2x28/32/42/0F/UNV M PEM	128-277	0.90/0.40 0.53/0.23	42W DT/E 57W DT/E	3200 4300	2	0.95	6080 4300	94 62	65 69
din mani	in	j Institute Cashila D	0.57/0.25	7 IW DT/E	5200	1	0.92	4780	71	67
лю физ	iæ:see Edlad Technology & Spæll NORN			R = 00P 0F medals				ing bracket; as had	Loose meetings are	
5171B	OTP 1/2x13CF/UW BS	1	ACTINACIO	13W DOVE,T/E	988	1	1.88	988	16	50
5174B	OTP 1/2x13CF/UW/TS	- 128-277	0.25/0.11	13W DOVE, T/E	ů.	ż	1.00	1800	29	56 62
51723 51753	OTP 1/2x18CF/UW BS OTP 1/2x18CF/UW TS	128-277	0.32/0.14	16W DKVE,T/E 16W DKVE,T/E	1200 1200	12	1.00	1200 2400	20 39	60 63
21122	ATT 102.1001/28110	1	5.4410.14	26W DO/E T/E	1800	1	1.00	1800		64
51733 51763	OTP 2x28CF/UNV BS OTP 2x28CF/UNV TS	- 128-277	0.50/0.22	26W DKVE T/E 32W DT/E	1800 2400	2	1.88	3600 2350	28 54 35	67 67
51/63	uir 2020Griuw Io]		42W DT/E	3200	i	1.88	3200	45	71
51738	OTP 1/2xCF/UW BM	1		26W DC/E,T/E	1800	1	1.82	1830	28	65
5179B 5176B	OTP 1/25/CF/UW/PM OTP 1/25/CF/UW/TM	- 128-277	0.57/0.25	26W DOVE,T/E 32W DT/E	1800 2400	2	1.82	3670 2330	57 36	64 65
]		42W DT/E	3200	1	1.88	3200	36 46	70
51743 51803	0TP 2x26/32/420F/UW/ BM 0TP 2x26/32/420F/UW/ PM	1		26W DT/E 32W DT/E	1800 2400	222	1.82	3670 4600	54 60	6B 67
51773	0TP 2x26/32/420F/UW/TM	128-277	0.90/0.40	42W DT/E	3200	2	0.95	6080	94	65
	Also openates one 57W or 70W CFL Lamps	J	0.53/0.23 0.57/0.25	57 W DT/E 7 UW DT/E	4300 5200	ł	1.00	4300 4780	62 71	69 67
QUICK	TRONIC [®] HIGH EFFICIEN	CY POWE	R8EN8E"	32 T8 DIMMIN	а ауаты	M8 - A G	t of controls	era in available f	tone OSREAM SI	
	Power-line contro									
50705	OTP 1x32TB/UWV DIM-TC	128-277	0.27/0.12	F08290P	3000	1	0.88	2640 158	30 B	BB
		433.977	0.54/0.24	F0820P	3000	2	0.85	5290	68/58	88/9
50707	GTP 2x32TB/UWV DIM-TC	128-277					0.85	388	15	
			0 79/0 90	EUSIME	3000	0	0.88	2020	\$7.524	01/0
	OTP 2x32TB/UW DIN-TC OTP 3x32TB/UW DIN-TCL	128-277	0.73/0.30	F0820P	3000	8	0.88 0.85	7920 458	87/94 20	91/9
50714			0.73/0.30	F082XP F082XP	3000 3000	3 4	0.85	458	20	
50714 50716	OTP 3432TB/LWV DIN-TCL OTP 4432TB/LWV DIN-TCL	128-277 128-277	0.96/0.40	F0820P	3000	4	0.85	458 10568 688	20	
50714 50716 <i>Pomersen</i>	GTP 3c32TB/UNV DIM-TCL	128-277 128-277 128-277	0.96/0.40 R0.25, F017 & R	FOS2XP Osz. <i>Powersense</i> 7	3000 Ta ngalao an Ka	4 rmar Halton	0.15 0.88 0.15 Ta dhun hy	450 10560 600 100dbala	20 114/110 27	
50714 50716 <i>Pomersen</i>	OTP 3x32T6/UW/ DIM-T CL OTP 4x32T6/UW/ DIM-T CL SE= QTP matink above also operate	120-277 120-277 150-2 Jamps 150-2 Jamps 150-2 HELIO	0.95/0.40 R025, F0/7 & R9 98* 32 T8 D	FOSCOP Color: Formersense 7 Himming: ByrBit	3000 Is naplacas fo IEIM18 - A 1	4 marHalte Int of contro	0.15 0.88 0.15 Ta dhun hy	450 10668 688 (ARM)228 (ARM)228 (ARM)228	20 114/110 27	
50714 50716 Aonersen Quickt	OTP 3c32TB/UW/ DIN-TCL OTP 4c32TB/UW/ DIN-TCL SE= (TP)make down also operate TRIONIC= HIGH EFFICIEN	120-277 120-277 150-2 Jamps 150-2 Jamps 150-2 HELIO	0.95/0.40 R025, F0/7 & R9 98* 32 T8 D	FOSCOP Color: Formersense 7 Himming: ByrBit	3000 Is naplacas fo IEIM18 - A 1	4 marHalte Int of contro	0.15 0.88 0.15 Ta dhun hy Hen h rol Web Contro 1.20	450 10660 600 rpandazis Mile Iron COPA of Applications (14400	20 114/110 27 mi sytwara biy 145	
50714 50716 20105855 CUICK 50718 0	OTP 3x32TB/UW DW-TCL OTP 4x32TB/UW DW-TCL BE OTP matike above also operation FROMIC HUGH EXPRESS High Ballast F OTP 4x32TB/277 DM PLUS-TCL	121-277 121-277 11are lange ICY HELIC actor - "P 277	0.95/0.40 R025, F0r7 & R D8* 32 T8 D LU8* High I 0.53	F0320P Osz. POMERSENSE I IMMING BYBT Light Output 8 F0320P	3000 Tanplacas fo EM18 – A Tystem – F 3000	4 Inter Halts Int of conto For 2014, 6-4 4	0.15 0.38 0.15 Ta dhumhy Sen b ma b Web Contro 1.20 0.15	450 10560 600 7,003525 1046 Item C394 24,005025 24,005025 24,0050 14480 600	20 114/110 27 27 28 29 29	92/9 99
50714 50716 20105855 CUICK 50718 0	aTP 3c32TB/UW DW-TCL aTP 4c32TB/UW DW-TCL SE (TP make show also operate TRONIC [®] HIGH EFFICIEN High Ballast F	128-277 128-277 11ars lange ICY HELIC actor - "P 277	0.95/0.40 R025, F0rr & R5 98 * 32 T8 D LUS* High I 0.53 R9EN9E *	FOSIOF Osz. POMERSENSE I IMMIN G SY'ST Light Output S FOSIOF 28 T5 DIMMIN	3000 Sraplaces fo EMB - A Social Stem - F 3000 S SYSTE	4 International International For 2000, 4-4 4 MIS - 4 La	0.15 0.85 0.15 <i>Ta dhomhy</i> 14th Control 1.20 0.15	450 10660 600 rppodbala bile incer CGRA bile incer con	20 114/110 27 20 20 20 145 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	92/9 99
50714 50716 ADMERSEA QUICK 50718 o	OTP 2022TB/UW DW-TCL OTP 4022TB/UW DW-TCL BE= OTP make down also operating FRONIC® HUGH EFFICIEN High Ballast F OTP 4022TB/277 DM PLUS-TCL TRONIC® HUGH EFFICIEN	128-277 128-277 11ars lange ICY HELIC actor - "P 277	0.95/0.40 R025, F0rr & R5 98 * 32 T8 D LUS* High I 0.53 R9EN9E *	FOSIOF Osz. POMERSENSE I IMMIN G SY'ST Light Output S FOSIOF 28 T5 DIMMIN	3000 Sraplaces fo EMB - A Social Stem - F 3000 S SYSTE	4 International International For 2000, 4-4 4 MIS - 4 La	0.15 0.88 0.15 To dhow hy with Contro 1.20 0.15 10 control n/ng Rar 1.00	450 10560 600 rpandods bite tran 0060 04ppibativno 1480 600 en in weihidels 10ge - <1098 5000	20 114/110 27 20 20 145 28 5 77HD 63/62	92/9 99
50714 50716 2016K1 2016K1 50718 0 2016K1 50726 0	OTP 3x32TB/UW DON-TCL OTP 4x32TB/UW DON-TCL BE= OTP initials also operating FRONICS HIGH EFFICIEN High Ballast F OTP 4x32TB/2TT DIM PUIS-TCL FRONICS HIGH EFFICIEN POW or-line control	128-277 128-277 128-277 148-9 Junpe 148-9 Junpe 148-14 128-277 128-277	0.950.40 Riz, Förr & B 16 32 T 6 D LUS ^{*-} High 1 0.53 or 0-10Vdc 0.530.23	F0820P Example F0820P Example F0820P Example F0820P Example F0820P Example F0820P Example F0820P	3000 Singalacus fis EM8 - A System - J 3000 Si SYSTE e) - 100-1	4 mar Halte to Contro For 2014, 44 4 MS - 4 to 195 Direct	0.15 0.88 0.15 Ta dhunhy Web Contro 1.20 0.15	450 10560 600 Ipodada Inte Iron CGRJ Idagebatiens (14400 600 Inte availate (1999 - <109%	20 114/110 27 28 28 28 28 28 28 28 28 28 28 28 28 28	92/9 99
50714 50716 ADMERSEA OUICKT 50718 0 50726 0 ADMERSEA	aTP 3c32TB/UW DW-TCL aTP 4c32TB/UW DW-TCL SE= QTP matkle above also operate TRONIC® HIGH EFFICIEN High Ballast F aTP 4c32TB/277 DM FUS-TCL TRONIC® HIGH EFFICIEN Power-line control	128-277 128-277 there impe- icy HELIO actor - "P 277 icy Powe of (2-wite) 128-277 base impo-F	0.950.40 Rizs, F0rr & H 98" 32 TB D LU8" High I 0.53 FR9EN9E or 0-10Vdc 0.530.23 Fast FFz & AFPT	FOSIXP Stat. Pomensense i IMMINIG EVEN Light Output & FOSIXP 28 TIS DIMMINI control (4-with FF28	3000 angelaous /a gysterm - / 3000 a 8Y8TE e) - 100-1 2000	4 mar Haltz No 2006, 44 4 MS - A La 194 Direct 2	0.15 0.33 0.15 Ta dhumhy Web Control 1.20 0.15 to Control 1.20 0.15	450 10560 600 10560 10560 14400 600 14400 600 14400 600 14400 600 14400 600 500 500 500	20 114/110 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	92/9 99 1.11444 92/9
50714 50716 ADMEASEA OLUCKI 50718 O CULCKI 50726 O ADMEASEA ADMEASEA	aTP 3c32TB/UW DON-TCL aTP 4c32TB/UW DON-TCL BE= (ITP makes also operating TRONICS HIGH EFFICIEN High Ballast F aTP 4c32TB/2TT DM PUS-TCL TRONICS HIGH EFFICIEN Power-line contro aTP 2c28T5/UW DON-TCL BE= (ITP makesbase also opening TRONICS PROFESSIONAL	128-277 128-277 128-277 128-277 129 HELIO 120 HELIO 127 129 HELIO 120-277 128-277 1	0.950.40 Rizs, Förr & H 96 32 16 D 1.08" High I 0.53 97 0-10Vdc 0.530.23 935 Fizz & Fizz 54 15 HO 5 control -	F0820P Example of the second s	3000 5 npbloar fo EM8 - 4 1951em - 7 3000 3 8Y8T El 8) - 100-1 2000 TEM8 ³ - ing Range	4 maar Halks let of contro for 2777 (4-4 4 MSB - A 1a 2 A link of cos 9 - <10%	0.15 0.88 0.15 To damby First barn 1.20 0.15 to control ming Rar 1.80 0.11 0.11	451 10560 10560 1060 (2000) 1460 (2000) 14400 1440 144000 144000 144000 144000 140	20 114/110 27 27 27 27 27 27 28 29 29 29 20 29 29 20 20 20 20 20 20 20 20 20 20	92/9 59 1.11444
50714 50716 2016K1 50718 0 0016K1 50728 0 2016K1 2016K1	OTP 2x32TB/UW DW-TCL OTP 4x32TB/UW DW-TCL BE= OTP matelet above also operate FRONIC= HIGH EFFICIEN High Ballast F OTP 4x32TB/277 DM PUIS-TCL TRONIC= HIGH EFFICIEN POW eF-Ine contro OTP 2x28TS/UW DM-TCL BE= OTP mateleabove also specify	121-277 121-277 121-277 121-277 121-277 121-277 121-277 121-277 121-277 121-277 121-277	0.950.40 R0.25, F0tr & H 053 2 TB D LLDS" High I 0.53 FPSENSE or 0-10Vdc 0.53/0.23 Fast F3z & 4F5r 54 T5 HO	FOSIXP Example of the second s	3000 (a nplacar /s EM8 - a (ysfam -) 3000 (a 8Y8TE (a) - 100-1 2000 (TEM8 ^b -	4 mar Halter let of contro for 2011(#-6 4 MS3 - & Lo 2 & Tet of con	0.15 0.38 0.15 To domby Field Control Field Control 1.20 0.15 to Control Ning Ray 1.80 0.11	450 10560 600 10560 10560 14400 600 14400 600 14400 600 14400 600 14400 600 500 500 500	20 114/110 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	92/9 99 1.11444 92/9
50714 50716 20106KT 20106KT 20106KT 20106KT 20106KT 40671	aTP 3c32TB/UW DON-TCL aTP 4c32TB/UW DON-TCL BE= (ITP makes also operating TRONICS HIGH EFFICIEN High Ballast F aTP 4c32TB/2TT DM PUS-TCL TRONICS HIGH EFFICIEN Power-line contro aTP 2c28T5/UW DON-TCL BE= (ITP makesbase also opening TRONICS PROFESSIONAL	128-277 128-277 128-277 128-277 129 HELIO 120 HELIO 127 129 HELIO 120-277 128-277 1	0.950.40 Rizs, Förr & H 96 32 16 D 1.08" High I 0.53 97 0-10Vdc 0.530.23 935 Fizz & Fizz 54 15 HO 5 control -	F0820P Example of the second s	3000 5 npbloar fo EM8 - 4 1951em - 7 3000 3 8Y8T El 8) - 100-1 2000 TEM8 ³ - ing Range	4 maar Halks let of contro for 2777 (4-4 4 MSB - A 1a 2 A link of cos 9 - <10%	0.15 0.85 0.15 78 dhomhy Fibb Control 1.20 0.15 1.00 0.15 1.00 0.11 1.00 0.11 1.00 0.11 1.00 0.11	451 10,560 10,560 10,560 10,560 14,400 14,000 14,400 14,000 14,400 14,000 14,400 14,000 1	20 114/110 27 27 27 27 27 27 27 27 28 29 29 20 20 27 27 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20	92/0
50714 50716 50716 60010KT 50718 0 50728 0 50728 0 50728 0 50728 0 50728 0	OTP 3x32TB/UW DON-TCL OTP 4x32TB/UW DON-TCL BE= OTP models also earls operating FRONICS HIGH EFFECTEN High Ballast F OTP 4x32TB/27T DM PUIS-TCL IRONICS HIGH EFFECTEN Power-line contro OTP 2x28T5/UW DON-TCL BE= OTP modelabore also opening IRONICS PROFESSIONA OT1554/27TPHO-DIM	128-277 128-277 128-277 128-277 129-277 129-277 129-277 129-277 129-277 120-277 120-277 120-277	0.950.40 Rizs, Förr & H 96 32 T6 D 1.08" High I 0.53 67 0-10Vdc 0.530.23 F35 F52 4F5 54 T5 HO 5 control - 0.54 0.23	F0820P Example of the second s	3000 is replacer to EM8 - 4 iys fam - 1 3000 3 8Y8TE a) - 1 00-1 2000 STEM8 ³ - ing Range 5000 5000	4 max Halte let of control For 2006 + 4 4 MS3 - 4 to 195 Direct 2 4 1 to 1	0.15 0.35 0.15 75 d2mm/bg 975 b m 1.28 0.15 0.15 0.15 0.11 1.18 0.11	451 10,660 10,660 10,600 14,600 14,400 14,000 14,400 14,000 1	20 114/110 27 27 27 27 27 27 27 27 28 29 29 29 29 29 20 29 29 20 20 20 20 20 20 20 20 20 20	02/9 59 11/14/44 02/9 11 11 11 11 11 11 11 11 11 11 11 11 11
50714 50716 20106KT 20106KT 20106KT 20106KT 20106KT 40671	OTP 3x32TB/UW DW-TCL OTP 4x32TB/UW DW-TCL BE= OTP matale above also operate INONIC* HIGH EFFICIEN High Ballast F OTP 4x32TB/277 DM PUIS-TCL TRONIC* HIGH EFFICIEN POW or-line contro OTP 2x28TS/UW DM-TCL BE= OTP matalabase also specify TRONIC* PROFEEDINA OT1554/120PH0-DM	128-277 128-277 128-277 128-277 129-277 127 129-277 128-277	0.950.40 R0.25, F0tr & H 0.53 F0ENSE or 0-10Vdc 0.53/0.23 F3ENSE F3ENSE 54 T5 HO 0.54	F082XP State Powerstense T IMMING SYST Light Output S F082XP 28 TG DIMMING Control (4-win FF28 4 DIMMING SYS 100-1% Dimmi FF54TSH0	3000 5 raplace for EMS - a ystem - i 3000 3 SYSTE a) - 100-1 2000 STEM6 ³ - ing Range 5000	4 maar Halte to Contro 2 A lat of contro 2 A lat of cos 0 - <10% 1	0.15 0.85 0.15 78 dhomhy Fibb Control 1.20 0.15 1.00 0.15 1.00 0.11 1.00 0.11 1.00 0.11 1.00 0.11	451 10,560 10,560 10,560 10,560 14,400 14,000 14,400 14,000 14,400 14,000 14,400 14,000 1	20 114/110 27 27 27 27 27 27 27 27 28 29 29 20 20 27 27 27 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20	02/9 59 11/14/44 02/9 11 11 11 11 11 11 11 11 11 11 11 11 11
50714 50716 50716 CUICKT 50718 C CUICKT 50728 C 50728 C 201CKT 40671 40672	OTP 3x32TB/UW DON-TCL OTP 4x32TB/UW DON-TCL BE= OTP models also earls operating FRONICS HIGH EFFECTEN High Ballast F OTP 4x32TB/27T DM PUIS-TCL IRONICS HIGH EFFECTEN Power-line contro OTP 2x28T5/UW DON-TCL BE= OTP modelabore also opening IRONICS PROFESSIONA OT1554/27TPHO-DIM	128-277 128-277 128-277 128-277 129-277 129-277 129-277 129-277 129-277 120-277 120-277 120-277	0.950.40 Rizs, Förr & H 96 32 T6 D 1.08" High I 0.53 67 0-10Vdc 0.530.23 F35 F52 4F5 54 T5 HO 5 control - 0.54 0.23	F0820P Example of the second s	3000 is replacer to EM8 - 4 iys fam - 1 3000 3 8Y8TE a) - 1 00-1 2000 STEM8 ³ - ing Range 5000 5000	4 max Halte let of control For 2006 + 4 4 MS3 - 4 to 195 Dirac 2 4 1 bit of cost 1 1	0.15 0.35 0.15 75 d2mmhg 765 brol 766 control 766 cont	450 10,560 500 10,560 10,560 10,500 500 500 500 500 500 500 500	20 114/110 27 14/110 27 14/110 27 14/5 28 14/5 28 14/5 28 10 61/0 8 61 8 120 119 117	02/9 59 11/14/44 02/9 11 11 11 11 11 11 11 11 11 11 11 11 11
50714 50716 50716 50718 o CULCKT 50718 o CULCKT 50726 o S0726 o S0726 o S0726 o S0726 o S0726 o S0727 S 40671 40672	OTP 3x32TB/UW DON-TCL OTP 4x32TB/UW DON-TCL BE= OTP in adde also operating FRONTICS HUGH EFFECTION High Ballast F OTP 4x32TB/277 DM PUIS-TCL FRONTICS HUGH EFFECTION POW or-line control OTP 2x28TS/UW DM-TCL BE= OTP in addabase also operate FRONTICS PROFEEDINA OT12554/227PHO-DIM OT2254/227PHO-DIM OT2254/227PHO-DIM	128-277 128-277 128-277 128-277 129-277 129-277 129-277 129-277 120-277 120 277 120 277	0.950.40 Rizs, Förr 4 /8 10 32 16 D 10 053 10 0-10 Vide 0.530.23 10 0-10 Vide 0.530.23 10 0-10 Vide 0.530.23 10 0-10 Vide 0.54 1.07 0.45	F082XP State Polyters F1 Mining System Light Output S F082XP 28 TIS Dimmini Control (4-win FF28 4 DIMMINIG SYS 100-1% Dimmi FF54TSH0 FF54TSH0	3000 (a replacer fo EM8 - 1 3000 (3 SYSTE a) - 1 00-1 2000 (TEM8 ³ - 1 5000 5000 5000	4 mmar Halter Int of control For 2776 4-5 4 MS9 - 4 to 7% Dirmon 2 4 Int of cos 9 - <10% 1 1 2	0.15 0.85 0.15 76 d2mhy 120 120 120 120 120 120 120 120 120 120	458 10568 10568 10688 10688 10688 10688 10688 10688 10688 1068	20 114/110 27 145 28 29 29 20 145 29 20 145 29 5774D 63/62 10 10 10 10 10 10 10 10 10 10	0239 99 0204 0204 8 1 87 87 82 83
50714 50716 50716 50718 o CULCKT 50718 o CULCKT 50726 o S0726 o S0726 o S0726 o S0726 o S0726 o S0727 S 40671 40672	OTP 3x32TB/UW DW-TCL OTP 4x32TB/UW DW-TCL BE= OTP matale above also operate INTONICS HIGH EFFICIEN High Ballast F OTP 4x32TB/277 DM PUIS-TCL TRONICS HIGH EFFICIEN POW or-line contro OTP 2x28TS/UW DM-TCL BE= OTP/matalabase also speale TRONICS PROFESSIONA OT1254/120PH0-DM OT1254/120PH0-DM	128-277 128-277 128-277 128-277 129-277 129-277 129-277 129-277 120-277 120 277 120 277	0.950.40 Rizs, Förr 4 /8 10 32 16 D 10 053 10 0-10 Vide 0.530.23 10 0-10 Vide 0.530.23 10 0-10 Vide 0.530.23 10 0-10 Vide 0.54 1.07 0.45	F0820P Example of the second s	3000 is replacer for EM8 - 1 ys favm - 1 3000 3 8Y8 T E a) - 1 (00-1 2000 5000 5000 5000 5000 5000	4 mmar Halte tet of control for 2006 +	0.15 0.35 0.35 75 d2mm/bg 970-b m 1.28 0.15 1.28 0.15 1.28 0.11 1.18 0.11 1.18 0.11 1.18 0.11 1.18 0.11	450 10,560 500 10,560 10,560 10,500 500 500 500 500 500 500 500	20 114/110 27 145 28 145 29 145 29 145 29 145 29 145 29 145 29 145 29 145 29 145 29 20 20 20 20 20 20 20 20 20 20	0239 99 100944 0230 8 81 82 83 85


6 3/4"

TYPE:

Luminaire Type PP2 – Luminaire Cutsheet

Specification grade 42 Watt triple tube compact fluorescent wall wash fixture. Insulation must be kept 3" from fixture sides and top of fixture. The stepped kicker reflector maximizes light towards the wall for smooth, pattern free wall illumination. Cutoff to lamp and lamp image is 50°. Unit can be relamped from above. Lamp module and optical element can be changed after installation to provide a variety of lamp sources and distributions. e.g. Into a PAR36 Adjustable.

SPECIFICATION FEATURES

A...Reflector

.040 thick aluminum specular clear kicker and spun parabolic reflector in Clear, Gold, Haze Warm Haze, Black Alzak* finish, painted gloss white or matte white. Special cone colors listed below.

B...Kicker

injection molded, vacuum metalized stepped optics with hardcoat finish is specular clear to minimize flashback. Available in single (120%), double (for corridors (2)120° @180° apart), corner (for inside corners 240°), and half (for out-side corners and doors 60°) wall wash versions.

C…Flange

Self flange reflector or die-cast flange with either matte white or clear coat finish. Die-cast flanges are easily removed for field painting. Elements are keyed for proper insertion.

D...Attachment

Positive torsion springs pull flange tight to ceiling. Mechanical light trap eliminates spill light at edge of flange or reflector. The two reflectors are keyed for top relaming.

E·⊷Sock et

4 pin G24q4 base for 42W PLT, TBX and TTT lamps (G24q2 for 32W lamps). Fatigue free stainless steel spring ensures positive lamp retention. Fixed socket height ensures consistent lamp position.

F...Electronic Ballast

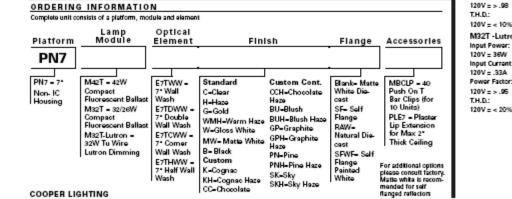
Thermally protected, current controlled rapid start ballast produces full light output and rated lamp

life. Provides flicker-free and noise-free operation and starting. Meets stringent Class B requirements, FCC part 18, for non-commercial applications.

G…Electrical Keyed quick connect provides easy lamp module installation.

H…Frame/Housing Hot dipped galvanized 20 gauge steel frame with built in 1/2 inch plaster lip. Aluminum .032 thick housing allows for heat dissipation and reduces weight. Top is removable for above celling access.

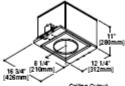
I…Junction Box 18 cubic inches, listed for 4#12 AWG or 6#14 AWG 90° C additional feed through conductors, has five 1/2" pryouts.


J...Bar Hangers

No Flex* bar hangers with positive locking, for use with wood, engineered wood and steel frame joists ship with platform. For use in T-bar ceilings order accessory MBCLR

K...Codes Thermally protected, IP labeled. Unit is airtight and exchanges less than 2.0 CFM with the plenum at apressure of 75 pascals. Insulation must be kept three inches away from fixture sides and none on top as to entrap heat.

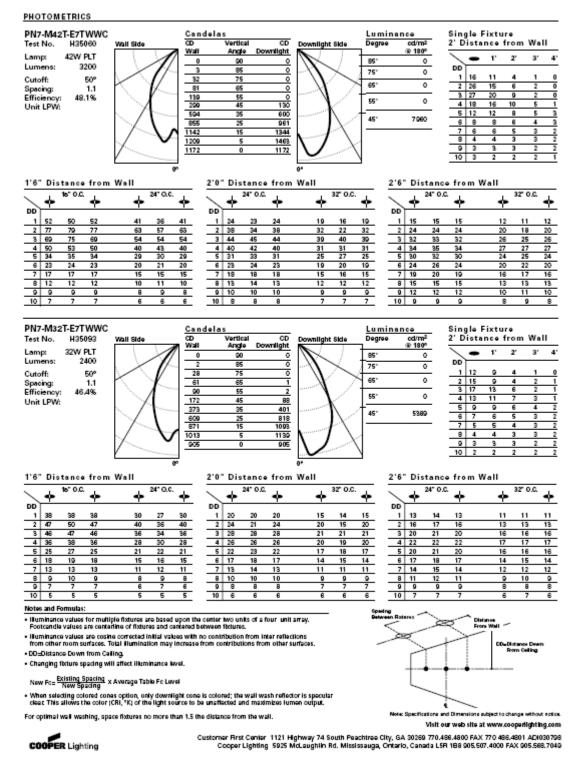
L···Labels UL and cUL listed, standard damp label,


IBEW union made

Compact Fluorescent

7" WALL WASH DOWNLIGHT

Celling Cutout 7 3/4" (197mm)


ENERGY DATA 7" AirTight 42W Lamp Input Power 120V = 53W Input Current (Max.): 120V = .45A Power Factor: 120V = >99 T.H.D.: 120V = <10%

32W Lamp Input Power 120V = 36W Input Current (Max.): 120V = .306 Power Factor: 120V = > .98 T.H.D.: 120V = < 10% M32T -Lutron Input Power 120V = 36W Input Current (Max.): 120V = .33A Power Factor: 120V = > .95 T.H.D.:

AD1030798

Unit Number: PN7-M42T-E7TWW

Luminaire Type PP2 – Lamp Information

	TNER	Commercial Products & Solution
a s	TESEARCH FHOME *	PRODUCTS EDUCATION / RESOURCES Identing APPLICATIONS
		Where to Buy FAQs Contact Us Eliter
Products > Compact	Fluorescent > Plug-In > Triple Blax	
97630 - F32TB)		Ibr. Office: Rectaurant: Manabaura
GE Ecoluxis blaxis 1	4 - Facilities; Retall Display; Hospital	ity, onice, restaurant, warenduse
High Color Rendering	1	Bulb Base
Energy Savings		
GENERAL CHARAC	TERISTICS	8 8
Lamp type	Compact Fluorescent - Plug-In	
Bulb	Τ4	View Larger
Base	GX24q-3	-
Wattage	32	ADDITIONAL RESOURCES
Voltage	120/100	Catalogs
Rated Life	12000 hrs	Testimoniais
Starting Temperature (MIN)	0 °C (32 °F)	Brochures Product Brochures Ecolux
Cathode Resistance	2.700 Ohm	 Ecolux (Environmental) Sell Sheets
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h	Fast Warming Blax® T/E 32W with Amalgam
Additional info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant	Disposal Policies & Recycling Information GRAPHS & CHARTS
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse	Spectral Power Distribution
PHOTOMETRIC CH	ARACTERISTICS	200 (V a anny U a spin
initial Lumens	2200	
Mean Lumens	1850	- g 160
Nominal Initial	68	
Lumens per Watt		- 40 Participante de la construcción de la construc
Color Temperature	3000 K	
Color Rendering	82	
index (CRI)		
		abo aso 4aa 450 500 500 500 500 700 750 Wavelength (1wn)
ELECTRICAL CHAP		
Current (max)	5.2500 A	-
Open Circuit Voltage (after preheating) (MAX)	265 V	
Open Circuit Voltage (MIN)	515 V	-
Lamp Current	0.320 A	
Preheat Voltage (MIN)	4 V	-
Current Crest Factor (MAX)	1.7	-
Supply Current Frequency	20000 Hz	-

Luminaire Type PP2 – Ballast Information

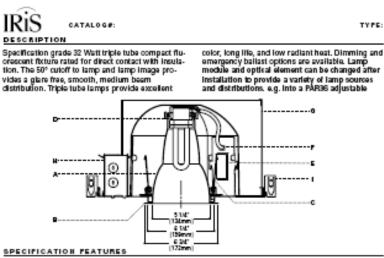
20						IDL-25	\$26-	M5-B	S@2	77	
A THE					3			ROVE			
	AVC	NC	E						onic Dim	mina	
									ammed S		
						Lamp Cor					
								e 120-2			
lectrical Sp	pecifica	lions			5	Input Fre					
					0	mputrie		Active			
							Status	ACTIVE	,		
Lamp Type	Num. of	Rated Lamp	Min. Start	Input	Input Power (Watts)	Ballast Factor (min/max)	MAX	Power Factor	Lam Curre		B.E.
	Lamps	Watts	Temp (°F/C)	(Amps		(minimax)	%	Factor	Crest Fa		
CFTR42W/GX2	4Q 1	42	50/10	0.17	09/47	0.03/1.00	10	0.99	1.6	3	2.13
	500-500 Align (1995		NIS () OU			iclosure	Đ				
CALEN T DALTE P DAL	WINC: (ALLAST VIII ALLAST VIII RE RECERCISED DIA DIA Sam that app	€ •// = { •// = {} •// = { •// = {} •// = {}	e is for							A	A J
CALEY CA	MINC: ALLAST YOU ACCAST AS Inclusion As Inclusion As Inclusion As Inclusion As In	. 165 ears above	e is for (*)					_		Mountin	3
CALLY CA	MINC: ALLAST YOU ACCAST AS Inclusion As Inclusion As Inclusion As Inclusion As In	. 165 ears above	e is for (*)			inclosure Dime	Width (V	V) He	-	Mountin	
CALLY CALLY CALLY DUALY DUALY STREAM STREAM CALLY DUALY DUALY STREAM CALLY DUALY DUALY DUALY STREAM CALLY DUALY DUALY DUALY STREAM CALLY DUALY DUALY STREAM CALLY DUALY DUALY STREAM STREAM CALLY DUALY DUALY STREAM	MINC: ALLAST FILL ALLAST FILL Fill and that appended by the and Length in. on.]	. 165 ears above	e is for (*)			inclosure Dime OverAll (L) 4.98 "	Width (V 3.00	V) He	1.18 "		g (M)
CALLY PULACE	MINC: ALLAST FILL ALLAST FILL RE Brand Big and that app enoted by the and Length in. cm. 0 0 0	I 165 wears above e asterisk (inches)	e is for (*)			inclosure Dime	Width (V 3.00	V) He)'' 3	-	2	2.00 *
CALLEN CALLEN PLANE PLANE PLANE PLANE Createring	MINC: I ALLAST FILL ALLAST FILL RE Second Big and that appended by the and Length in. cm. 0 0	I 165 wears above e asterisk (inches)	e is for			Inclosure Dime CverAll (L) 4.98 " 4 49/50	Width (V 3.00	V) He)'' 3	1.18 " 1 9/50	2	
CALLY PULACE	MINC: I ALLAST FILL ALLAST FILL Fill am that app enoted by the d Length in. cm. 0 0 0 0	I 165 wears above e asterisk (inches)	e is for (*)			Inclosure Dime CverAll (L) 4.98 " 4 49/50	Width (V 3.00	V) He)'' 3	1.18 " 1 9/50	2	2.00 *
The wiring diage the lamp type d Standard Lea Black White	MINC: I ALLAST FILL ALLAST FIL	I 165 wears above e asterisk (inches)	e is for (*) ow/Blue ue/White			Inclosure Dime CverAll (L) 4.98 " 4 49/50	Width (V 3.00	V) He)'' 3	1.18 " 1 9/50	2	2.00 *
The wiring diage the lamp type d Standard Lea Black White Blue	ALLAST FILL ALLAST	I 165 (inches)	e is for (*) ow/Blue ue/White Brown			Inclosure Dime CverAll (L) 4.98 " 4 49/50	Width (V 3.00	V) He)'' 3	1.18 " 1 9/50	2	2.00 *
The wiring diage the lamp type d Standard Lea Black White Blue Red	MINC: I ALLAST FILL ALLAST FIL	I 165 ears above e asterisk (inches)	e is for (*) ow/Blue Brown Orange			Inclosure Dime CverAll (L) 4.98 " 4 49/50	Width (V 3.00	V) He)'' 3	1.18 " 1 9/50	2	2.00 *

Revised 10/23/2007

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

> ADVANCE O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Final Report - Appendices


04/09/2008

). 5⊮'

TYPE:

Luminaire Type PP3 – Luminaire Cutsheet

A -- Reflector .040 thick aluminum spun parabolic reflector in Hidescence-free Clear, Gold, Haze, Warm Haze Alzat* or painted Gloss White finish. Special cone colors listed below

R---Flange

Self flange reflector or die-cast flange with either matte while or clear cost flinish. Die-cast flanges are easily removed for field pointing. Bements are layed for proper insertion.

C...Attachment

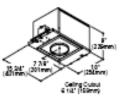
Positive torsion springs pull flange tight to ceiling. Mechanical light trap eliminates spill light at edge of flange or reflector.

D.--Socket

4 pin G24q3 base for 32W PLT, TBX and TTT lamps. Fatigue free stainless steel spring ensures positive lamp retention. Fixed socket height ensures consisient lamp position.

How we consistent lamp position.
 E--Electronic Bulliant
 Thermally protected, oursent controlled electronic
 balast produces full light output and raied lamp
 life. For 32W and 26W triple tube lamps. Provides
 licter-free and noise-free operation and starting
 with 120 or 277 voti input. Meets stringent Class B
 requirements, FCC part 18, for non-commercial
 applications. M32T Lutron for use with 32W lamp
 only.

- -- -


ORDERING INFORMATION Complete unit consists of a platform, models and element

.

Platform	Lamp Module	Optical Element	Fini	lsh	Flange	Accessories
P5 P5u5* Artight IC Rated Housing	M32T M32T a 2/2/3W Compact Rus Inscent Balart M32T Lutron, 22W Tu Wine Dimmable Balart	EST 5" Downlight Reflector	Standard CuClear HuHate GuGdd WMHuWarn Hate WuClose White MWUWAtte White Cuestoa KuCognac KU-Cognac Hate Courtoat	GP-Graphite GPH-Graphite Haze PN-Pine PN-Pine Haze	Etank_White dis-cast SFuSetf Flange Dis-cast SFWFuSetf Flange Painted White Ro Toneounce Oction	MPCLP_40 Push On T Sar Clips (for 10 Units) PLSSuPassien Up Satension for Max 2" Thick Colling PACSu Plan Mount Colliar norder PS2/TEMER as d
COOPER LP	ONTINO		CULUTIOCOLESE		additional options pla	

P5 M32T E5T 32W TRIPLE Compact Fluorescent 5" DOWNLIGHT

Î Π

ENERGY DATA Mazt Input Power 120V = 36W Input Current (Max.): 120V = .306A Power Factor:

120V = > .98 THD: 120V = < 10%

M32T Lutron

Input Power 120V - 36W Input Current (M ax.): 120V = .33A Power Factor: 120V = > 55 THD: 120V = < 20%

ADIESCOO

F---Electrical Kayed quick connect provides easy lamp module

O...Frame/Nonsing Hot dipped galvarized 20 gauge stael frame with built in 1/2 inch plaster ip. Gunsights allow for consistent alignment. Aluminum .022 thick housing allows for heat dissipation and reduces weight.

18 cubic inches, listed for 4#12 AWG or 6#14 AWG

90° C additional feed through conductors, has six

It- Part Hangers No Flext bar hangers with positive locking, for use with wood, engineered wood and steal frame joints speed up to 24° O.C. ship with platform for use in T-bar ceilings order accessory MBCLP clips. Nailess barb and locator lip provide consistent installation balant.

Thermally protected, IP labeled, for use in direct contact with insulation. Meets Washington State Air tight requirements, 1955 CABO Model Energy

UL and cUL listed, standard damp label, IBEW union made.

installation.

H.Jusction Box

1/2 inch pryouts.

installation height.

Codes

Code

Labela

Unit Number: F5-M32T-EST_

•

24 22 21

28 26

16

501

60° 70°

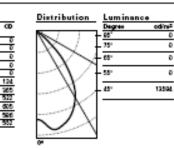
9/01

110

12/01

Beam Dianseter

10

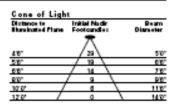

21

21 21

10

PHOTOMETRICS

P5-M32T-8 Test No.	ESTC Hasse7	Candola Vertical
Lamp: Lumena:	32W PLT 2400	<u>****</u>
Cutoff:	50"	75
Spacing: Efficiency: Unit LPW:	1.1 33.7% 22.4	55 45
UNK LI'M.	22.4	35 35
		15



Ð

Ð

Ð

Ð

Dome	Lare end	*Limp	Wittensie sine	Ceiling Reliectus re			100 C		X	×.	×	×.	30	
3-30	5 55	19.4	57.6	Wall Reflectasee	70	50	20	1.	50	10	50	10	50	1
0-40	680	29.9	85.5	Beore Cavity Ratie										
0-20	900	22.4	29.1	0	40	40	40	40	29	22	27	27	36	
6-90	910	22.7	103.0	1	22	- 27	- 27	8	2	38	28	- 34	ж	- 1
90-190	0	0.0	0.0	1	77	28	2	20	34	22	20	22	22	
0-160	910	22.7	103.0	3	25	20	31	20	22	20	21	29	21	
					22	21	29	2	30	27	20	22	8	
				5	31	29	27	25	29	25	28	25	2	
					30	27	25	25	27	28	28	22	x	
				,	29	25	22	22	25	22	25	22	м	1
					22	22	21	20	22	20	22	20	22	1
				9	25	22	20	12	22	12	21	- 16	21	
				10	24	20	12	12	20	12	20	17	20	1

Candolan Vertical P5-M32T-E5TC Tent No. Host Distribution Cone of Light Luminance CD odiine² D Initial No dir Sectorndis I Degree 65° H36107 Distance to Elemented Flame Angle 28W PLT Lamp: Lumens 0 75 Ð 1800 0 95 651 Ð Cutoff: Spacing: Efficiency: Unit LPW: 4161 5161 6161 50° 1.1 35.7% 27 65 55 45 19 0 103 305 450 566 55" 122 8/0/ 23.2 45" - 25 10606 10.0 25 120 572 540 Ð - --------- -

Zossi	Lenses S	ium mary		Coefficient of	Utill	zatio	•								
Zone	Lanence	SLAND	Sizesissire	Ceiling Reliectas ee		6	200 C		20		×		21		3
0-30	426	22.7	90.9	Wall Reflectae re	70	50	30	1.	50	10	50	10	50	1.	
0-40	616	342	97.9	Beore Cavity Ratie											
0420	8	39.9	20.6	0	66	4	46	46	45	45	43	43	61	41	- 20
6-90	701	39.9	103.0	1	44		42	42	42	41	41	40	40	28	37
90-190	٥	0.0	0.0	1	425	41	29	28	40	28	28	27	12	26	25
0-160	701	29.9	103.0	3	41	- 28	2	28	28	28	- 27	- 34	2	- 24	- 22
					29	26	x	20	34	22	28	22	ж	22	- 21
				5	27	х	22	20	22	30	20	30	32	25	25
				6	25	22	20	22	32	22	21	29	30	28	27
				7	22	20	22	14	30	22	25	36	39	25	25
				9	31	28	10	28	29	25	27	24	27	24	22
				9	30	25	25	22	36	22	25	22	25	22	21
				10	29	24	22	21	24	21	24	21	м	20	21
Notes :	and Fermula	a:													
Lamina	нок. То солин	rt odim ² to fo	otiamberts, mež	iply by 0.2919				tan Forawa	aic .						

Cone of Light: • Beam diameter into 50% of modimum toolcandies, rounded to the nearest half-foot • Footcand to values an initial. Apply appropriate light iom factors where necessary. See page 6645 of catalog.

0U Notes Forentia: • maintained illuminance-lamp lamenais CU s light loss factors room area

total number of laminalites.total room area a maintained illuminance Tamp laments Co a significant room.

OU data based on 20% effective floor cavity reflectance.

New Constitutions and Cleversing system is charge without noise

Visit our web site at www.comperlighting.com

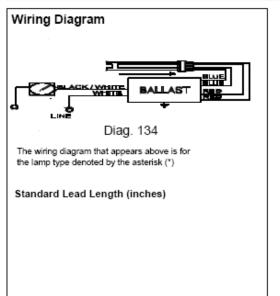
Customer Fint Canter 1121 High any 75 South Paachtnee City, GA 30259 770,695,660 FAX 770 455,587 ACE 2070 Cooper Lighting 5925 Nickaughtin Rd. Missiaaauga, Ontario, Canada LSR 199 605,507,660 FAX 605,559,769

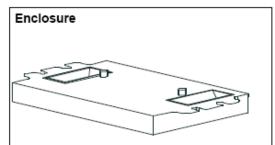
COOPER Lighting

Final Report - Appendices

Luminaire Type PP3 – Lamp Information

WORLDWIDE PAR	TNER				Comr	nercial Products & Solutions
	TE SEARCH	⊩ HOME	· PRODUCTS	EDUCATION / RESOUR	CES	LIGHTING APPLICATIONS
	TE SERVER	PTRAILE	11000010			
					where to b	IUY FAQs Contact Us EliteNet
Products > Compact	Fluorescent >	Plug-In > Triple B	<u>Biax®</u> > <u>T4</u> > 97615	5		
97615 – F26TB) GE Ecolumb Bianth T			pitality; Office; Resta	urant Warehouse		
		etali Display, 1103	priarity, Onioe, Nesia	uran, warenddae		
High Color Rendering						
Energy Savings			_			
GENERAL CHARA	CTERISTICS					
Lamp type	Compact Fluor	rescent - Plug-In	_	i i		
Bulb	T4					
Base	GX24q-3		_			
Wattage	26					
Voltage	120/105			Bulb	Base	
Rated Life	12000 hrs				(95)	(9)
Starting Temperature (MIN)	0 °C (32 °F)				(<u>a</u>	e F
Cathode Resistance	2.700 Ohm			19	B	
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12				View La	rger
Additional Info	Dimmable with dimming ballas		Catalaan	RESOURCES		
Primary Application	Facilities; Reta		Brochures			
	Warehouse		Product Bro <u>Ecolux</u>			
PHOTOMETRIC CH	ARACTERISTIC	CS	 Ecolux () Sell Sheets 	Environmental)		
nitial Lumens	1710		 Fast Warm 			
Mean Lumens	1440		Disposal Poli	icies & Recycling Information	on	
Nominal Initial Lumens per Watt	65					
Color Temperature	3000 K					
Color Rendering Index (CRI)	82					
ELECTRICAL CHAP	RACTERISTICS					
Current (max)	5.2500 A					
Open Circuit Voltage (after preheating) (MAX)	265 V					
Open Circuit Voltage Across Starter (MIN)	198 V					
Lamp Current	0.325 A					
Preheat Voltage MIN)	4 V					


Luminaire Type PP3 – Ballast Information



Electrical Specifications

VEZ-1T4	VEZ-1T42-M2-BS								
Brand Name	MARK 10 POWERLINE								
Ballast Type	Electronic Dimming								
Starting Method	Programmed Start								
Lamp Connection	Series								
Input Voltage	277								
Input Frequency	60 HZ								
Status	Active								

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (Watts) (min/max)	Ballast Factor (min/max)	MAX THD %	Power Factor	Lamp Current Crest Factor	B.E.F.
CFQ26W/G24Q	1	26	50/10	0.11	08/31	0.05/1.05	10	0.98	1.6	3.39
* CFTR26W/GX24G	1	26	50/10	0.11	08/31	0.05/1.05	10	0.98	1.6	3.39
CFTR32W/GX24G	1	32	50/10	0.14	09/38	0.05/1.05	10	0.98	1.6	2.76
CFTR42W/GX24C	1	42	50/10	0.18	10/49	0.05/1.05	10	0.99	1.6	2.14

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
4.98 "	3.00 "	1.29 "	2.00 *
4 49/50	3	1 29/100	2
12.6 cm	7.6 cm	3.3 cm	5.1 cm

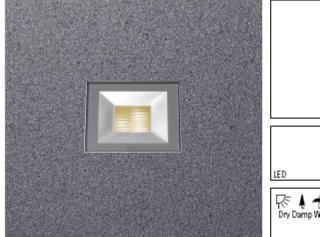
Revised 09/10/2002

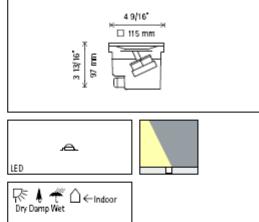
Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING FRANKLIN & MARSHALL COLLEGE LANCASTER, PA




Luminaire Type PP4 – Luminaire Cutsheet

Nadir Recessed floor luminaire

Grazing light wallwasher with LED

33804.023 LED warm white LED 3.6W 90Im 3500K

Product description

Product description Size 4 For mounting in accessories. Housing: corrosion-resistant cast aluminum, No-Rinse surface treat-ment. Black double powder-coated. Lampholder carrier 0°-25° tilt. Electronic control gear 120V, 60Hz. Connection cable, 2xAWG 14, L 19 11/16° / 500mm. Version 1 Replaceable LED module. Aperture mask: aluminum silver. Aperture mask: aluminum, silver, specular anodized. Sculpture lens. Safety glass: 1/4" / 6mm, clear. Load: 1124 b.wt / 5kN. Load: '124b.vir', 5kN. Mounting accessories to be ordered separately. Suitable for wet location (IP67): dust-proof and protected against immersion damage. To avoid submersion in standing water provide local drainage. Weight 1.980bs (0.90kg Temperature on the cover glass 87°F / 30°C

ERCO Lighting, Inc. 160 Raritan Center Parkway Suite 10 Edison, NJ 08837 USA USA Tel: +1 732 225 8856 Fax: +1 732 225 8857 info.us@erco.com

Technical Region: 120V/60Hz Edition: 11.15.2007 Please download latest version from www.erco.com/33804.023

Luminaire Type PP5 – Luminaire Cutsheet

DESCRIPTION

673 luminous Half Cylinder features a variety of decorative options such as perforated metal, colored acrylic, trim bars and is ADA compliant.

	shaper shaperlighting.cor
Catalog #	Туре
Project	
Comments	Date
Prepared by	

SPECIFICATION FEATURES

Material

Painted or plated solid aluminum with a 1/8" matte white extruded acrylic panel.

Finish

Standard: Natural Aluminum (NA). [Sustainable Design] Premium: Polished Chrome (PC), Satin Brass (SB), Polished Brass (PB), Lacquered Satin Aluminum (SAL), Matte White (MW), Satin Copper (SCP), Polished Copper (PCP), Satin Nickel (SN), Polished Nickel (PN), Oxidized Brass (OBRS), Lacquered Satin Chrome (SCL), Lacquered Satin Nickel (SNL) or Custom Color (CC).

Optics

Refer to www.shaperlighting.com for complete photometrics.

Ballast

Integral electronic HPF, multi-volt 120/277V (347V Canada), thermally protected with end-of-life circuitry to accommodate the specified lamp wattage.

Lamp/Socket

ORDERING INFORMATION

12": One (1) or two (2) 18W (2G11) 4-pin high lumen CFL lamps or one (1) 60W frosted T-10 lamp. 16*: Two (2) 27W (2G11) 4-pin high

lumen CFL lamps or two (2) 60W frosted T-10 lamps. 25": One (1) or two (2) 14W T5 linear fluorescent lamps. 37": One (1) or two (2) 21W T5 linear fluorescent lamps. CFL lamps or two (2) 60W Frosted T-10 lamps. CFL socket injection molded plastic. Lamps furnished by others.

Installation

Supplied with a universal circular strap for a standard 4" J-box or plaster ring.

Options

Hand-Painted Faux Alabaster Acrylic Diffuser (FD), Remote Emergency Battery (12' and 16' Integrated Emergency Battery (IEM) (25° and 37°), Dimming Ballast - Contact the factory for ballast options (DM), Top and Bottom Cover (TBC), Two Vertical Trim Bars (2VTB), Two Horizontal Trim Bars (2HTB), Two Vertical and Horizontal Trim Bars (2HTB/2VTB), Two Vertical Trim Bars with Perf Sides (2VTB/PS), Two Vertical Trim Bars with Four Wide Trim Bars (2VTB/4WTB), Two Vertical and Horizontal Trim Bars with Perf Center (2HTB/2VTB/PC), Two Proud Extended Vertical Trim Bars (2PVETB), Two Horizontal Trim Bars and One Proud Vertical Trim Bar (2HTB/1PVTB), MRI Applications (INC only) - Contact factory, Accent Balls (ACB), Three Horizontal and One Vertical Trim Bars with Perf (3HTB/1VTB/P), Damp Location (DL): All Painted Finishes, Lacquered Satin Chrome (SCL) and Lacquered Satin Nickel (SNL) finishes only. Energy Star Rating - Consult factory. MRI Applications (INC only) - Contact Factory.

Labels

U.L. and C.U.L approved for indoor and damp location. See options for damp location finishing requirements. ADA compliant (except 2PVTB, 2PVETB, 2HTB/1PVTB).

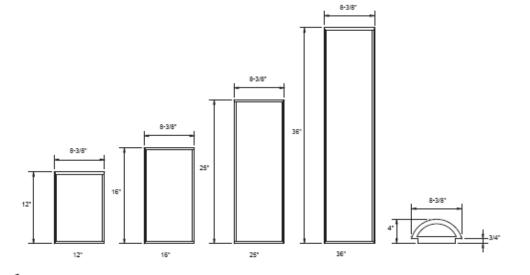
Modifications

Shaper's skilled craftspeople with their depth of experience offer the designer the flexibility to modify standard wall luminaires for project specific solutions. Contact the factory regarding scale options, unique finishes, mounting, additional materials/colors, or decorative detailing.

673 SERIES

Interior Wall Luminain Luminous Haif Cylinder

Sample Number: 673-12-CFL/2/18-277V-FCF Series Voltage Finish Options us Half Cylinde CFL/1/181 120V 2HTB Two Horizontal Trim Bars 673' Lumi Standard N.A. Natural Aluminum CFL/2/181 277 2HTB/1 PVTB* Two Horizontal Trim Bars and 1 Proud Vertical Trim Bar CFL/2/27* 34714 Premium CC¹ Custom Color 12° 16° 25° 2HTB/2VTB: Two Horizontal and Vertical Trim Bara INC/1/60* INC/2/504 MW¹ Matte White 2HTB/2VTB/PC⁺ Two Horizontal and Vertical Trim Bars w/ Perf Center T5/1/14# OBRS · Oxidized Brass 2PVTB: Two Proud Vertical Trim Bars 37 T5/1/21* PB⁺ Polished Brass 2VTB⁺ Two Vertical Trim Bars T5/2/144 PC: Polished Chrome T5/2/214 2VTB/4WTB* Two Vertical Trim Bars w/ Four Wide Trim Bars PCP^a Polished Copper 2VTB/PS-Two Vertical Trim Bars of Perforated Sides Nº Polished Nickel Available in 121 Note: 3HTB/1VTB/P¹ Three Horizontal and One Vertical Trim Bars w/ Perf Available in 197 SAL - Lacquered Satin Aluminum Available in 241 SB¹ Satin Brass ACB⁺ Accent Balls Available in 27* SCP-Satin Copper Available with CFL only. DL Damp Location SN- Setin Nickel Contait the factory for available options. DM · CFL Dimming Balast Supplied by others. SNL: Lacquered Satin Nickel IEM: Integral Emergency Ballast?. 4 REM[®] Remote Emergency Battery^{1, 7} FD- Hand Painted Faux Alabaster Diffuser TBC Top and Bottom Cover COOPER Lighting Specifications and Dimensions subject to change without notice.


cooperighting.com

ADS042688 01/22/2008 5:07:31 PM

673 SERIES INTERIOR WALL LUMINAIRE

Specifications and Dimensions subject to change without notice. Shaper Lighting - 1141 Marine Way South - Richmond, CA 14884 - ph 510.234.2370 - fre: 510.234.2371

ADS042688 01/22/2008 5:07:31 PM

Luminaire Type PP5 – Lamp Information

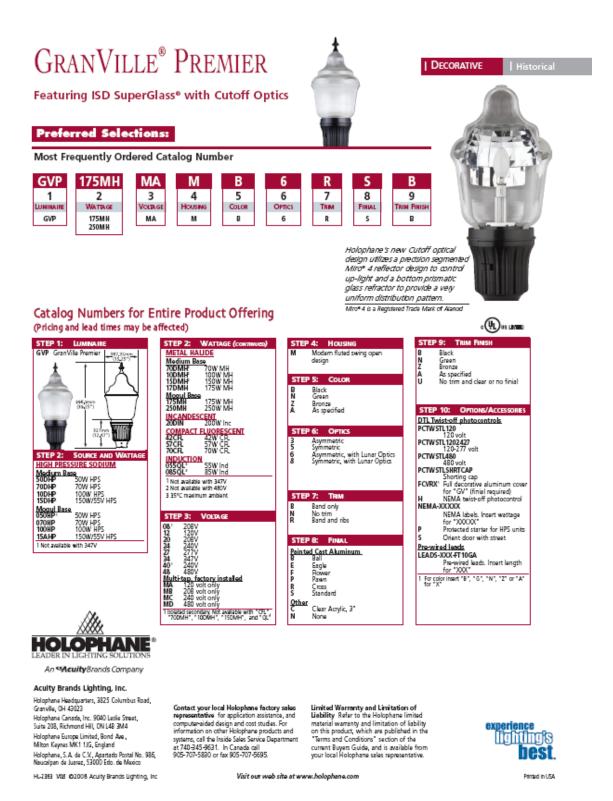
	Lighting	
WORLDWIDE PARTNER		Commercial Products & Solutions
SITE SEARC	H ⊩ HOME	PRODUCTS EDUCATION / RESOURCES IGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteNe
Products > Linear Fluorescent	> Straight Linear > _T5 >	3159D
31590 – F14W/T5/830/E GE Ecolux® Starcoat® T5	CO	PRINT
 Passes TCLP, which can low 	er disposal costs.	
🖉 High Color Rendering		
GENERAL CHARACTERISTIC	CS .	=
Lamp type	Linear Fluorescent -	
D. J.	Straight Linear	-
Bulb Base	T5 Miniature Bi-Pin (G5)	-
Wattage	14	Dulh Dere
Voltage	82	Bulb Base
Rated Life	30000 hrs	
Rated Life (rapid start) @	30000 h @ 3 h	d _
Time	36000 h @ 12 h	
Bulb Material	Soda lime	View Larger
Starting Temperature (MIN)	-20 °C (-4 °F)	
Additional Info	TCLP compliant	ADDITIONAL RESOURCES
PHOTOMETRIC CHARACTER	ISTICS	Catalogs
Initial Lumens	1350	<u>Testimonials</u> Brochures
Mean Lumens	1240	Application/Segment Brochures
Nominal Initial Lumens per Watt	96	Contractor Lighting Healthcare Lighting Product Brochures
Color Temperature	3000 K	• Ecolux
Color Rendering Index (CRI)	85	Disposal Policies & Recycling Information
S/P Ratio (Scotopic/Photopic Ratio)	1.3	GRAPHS & CHARTS
	TICE	Spectral Power Distribution
ELECTRICAL CHARACTERIS Open Circuit Voltage (rapid	230 V @ 10 °C	240
start) Min @ Temperature	230 V @ 10 'C	
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25	1900 mm 70, 2000 mm 70, 200
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5	
Current Crest Factor (MAX)	1.7	Statt Power up
DIMENSIONS		
Maximum Overall Length (MOL)	22.1700 in (563.1 mm)	20 200 400 400 600 660 900 750 Warvalength (nm)
Nominal Length	21.600 in (548.6 mm)	
Bulb Diameter (DIA)	0.625 in (15.8 mm)	Lamp Mortality
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)	

Luminaire Type PP5 – Ballast Information

Lamp Type W 1 2 5/8* Dia 21 (3 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28 (4 28)(4) (4 28)(4) (4 28 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	amp Vatts Length) 4W 22")	Lamps per Ballast	Case	1% Dimming		10% Dimming	Dellast
■ 24 5/8* Dia 21 (3 28 (44 T5-HO 24 Linear (2 ■ 39 5/8* Dia (3 5/8* Dia 54	22")		Type'	Hi-lume	5% Dimming	Eco-10	Ballast Current² – Amps
5/8° Dia 21 (3) 28 (4) T5-HO 24 Linear (2) ↓□ 39 5/8° Dia (3) 5/8° Dia 54		1	C ³			E 3 T514 C 277 1	.08
(3- 28 (44 T5-HO 24 Linear (2) ≰⊡3 39 5/8* Dia (3- 5/8* Dia 54	1W	2	C ³			E 3 T514 C 277 2	.14
28 (44 T5-HO 24 Linear (2 ⊒ 39 5/8* Dia (3 54		1	C ³			E 3 T521 C 277 1	.11
(44 T5-HO 24 Linear (2 1 39 5/8* Dia (3 5/8* Dia 54	34")	2	C°			E 3 T521 C 277 2	.19
T5-HO 24 Linear (2' I 39 5/8* Dia (3' 5/8* Dia 54	8W	1	C ³			ECO-T528-277-1	.14
Linear (2 ³ □ ³ 39 5/8* Dia (3 54	45")	2	C ³			ECO-T528-277-2	.25
≇ ⊡3 39 5/8° Dia (3 54	4W	1	C ³	FDB-T524-277-1		ECO-T524-277-1	.13
5/8" Dia (3 54	21.5")	2	C³	FDB-T524-277-2		ECO-T524-277-2	.20
54	9W	1	C ³	FDB-T539-277-1		ECO-T5H39-277-1	.17
	33.4")	2	C ³	FDB-T539-277-2		ECO-T5H39-277-2	.31
(4)	4W	1	C ³	FDB-T554-277-1		ECO-T554-277-1	.25
(-7	45")	2	C ³	FDB-T554-277-2		ECO-T554-277-2	.45
T8 Linear 17	7W	1	F	FDB-2427-277-1		ECO-T817-277-1	.08
and U-Bent (24	24")	2	F	FDB-2427-277-2		ECO-T817-277-2	.15
1		3	F	FDB-2427-277-3		ECO-T817-277-3	.20
1" Dia 25	5W	1	F	FDB-3627-277-1		ECO-T825-277-1	.12
(30	36")	2	F	FDB-3627-277-2		ECO-T825-277-2	.19
		3	F	FDB-3627-277-3			.28
	2W	1	F	FDB-4827-277-1		ECO-T832-277-1	.14/.15*
(4)	48")	1	D			ECO-T832-277-1-L	.14
		1	D				
		2	F D	FDB-4827-277-2		ECO-T832-277-2 ECO-T832-277-2-L	.25/.22* .23
		2	D			ECO-T832-277-2-T	.23
		3	F	FDB-4827-277-3		ECO-T832-277-3	.25
40	ow	1	F	FDB-6027-277-1			.16
(6)		2	F	FDB-6027-277-2			.30

1 For case type information, see pages 32 and 33.

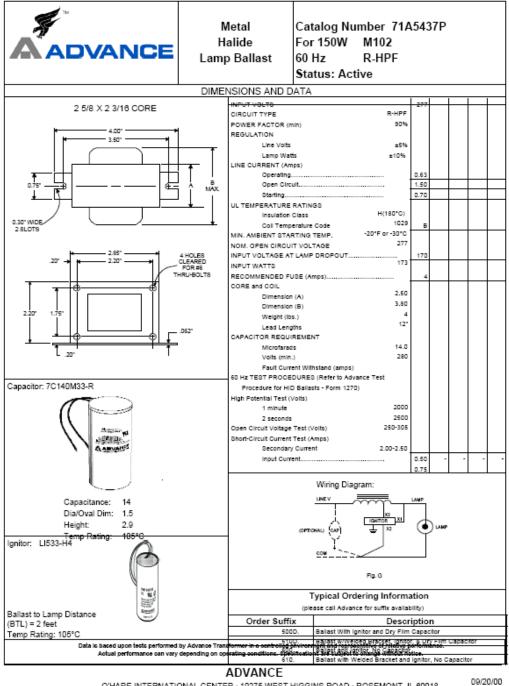
2 To calculate ballast input power, use the following formula: Watts = Ballast Current x 277.


3 Standard with terminals. Leaded options available. Please consult factory.

4 Eco-10 ballast current.

26 Lutron

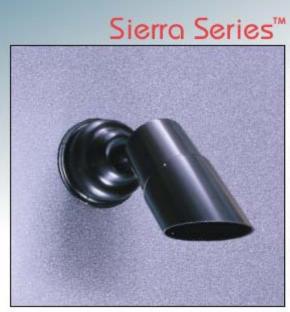
Luminaire Type QQ1- Luminaire Cutsheet



Luminaire Type QQ1 – Lamp Information

Return to: Open/Enclosed Fixtures	Print Page
	Product 64403 Number:
Product Ir	formation
Abbrev. With Packaging Info.	MPD150UMED840 20/CS 1/SKU
ANSI Code	M102/O
Approx. Lumens (initial - horizontal)	12500
Approx. Lumens (initial - vertical)	12500
Approx. Lumens (mean - horizontal)	11000
Approx. Lumens (mean - vertical)	11000
Arc Length (in)	0.62
Arc Length (mm)	15.7
Average Rated Life - Horizontal (hr)	6000
Average Rated Life - (hr)	6000
Average Rated Life - Vertical (hr)	7500
Base	E26 Medium
Bulb	E17
Color Rendering Index (CRI)	88
Color Temperature/CCT (K)	4200
Diameter (in)	2.125
Diameter (mm)	54
Family Brand Name	Designer Series Metalarc Pro-Tech
Fixture Requirement	0
Hot Restrike Time (min)	5-7
Lamp Finish	Clear
Light Center Length - LCL (in)	3.39
Light Center Length - LCL (mm)	86
Maximum Base Temperature - Fahrenheit	410
Maximum Base Temperature - Celsius	210
Maximum Bulb Temperature - Fahrenheit	752
Maximum Bulb Temperature - Celsius	400
Maximum Overall Length - MOL (in)	5.43
Maximum Overall Length - MOL (mm)	138
Nominal Voltage (V)	90.00
Nominal Wattage (W)	150.00

Luminaire Type QQ1 – Ballast Information



O'HARE INTERNATIONAL CENTER · 10275 WEST HIGGINS ROAD · ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 · Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

ANN AND RICHARD BARSHINGER LIFE SCIENCES & PHILOSOPHY BUILDING FRANKLIN & MARSHALL COLLEGE LANCASTER, PA

Luminaire Type QQ2– Luminaire Cutsheet

Features

- Tamper proof design.
 Completely sealed optical compartment.
 Clear, tempered glass lens, factory sealed.

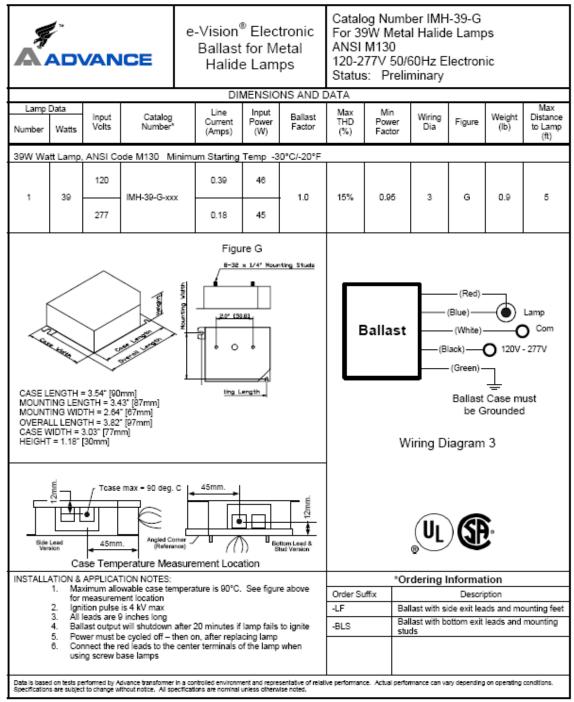
- Machined alumium construction with stainless steel hardware.
 ACV^{**} (Pat. Pend.) Valve System. See page 33.

The Sierra Series™ is designed for use with the PAR30 Master Color™ and other PAR30 metal halide lamps in wattages of 35W and 70W. The all aluminum construction and rich polyester powder coat finish will provide years of performance for this very popular lamp. The lighting designer has seven different ballast options to choose from, which facilitate a wide variety of practical applications. The Sierra Series incorporates the ACV™ (Pat. Pend.) Valve System for increased protection against internal condensation corrosion. It also incorporates the 360HD™ (Pat. Pend.) Mounting System with B-K Lighting's exclusive 'aim-and-lock technology'.

- 980HD[∞] (Pat. Pend.) Mounting System allows vertical to horizontal and rotational aiming with positive 'aim-and-lock technology', provides integral wireway. See page 33.
 Medium base pulse rated lamp holder with 250° C, 18 ga., wire leads.
 M & ∰ & ∰ Listed with 35W and 70W PAR90 metal halide lamps.
 For use with 35W or 70W, 120V or 277V metal halide balast.

- CATALOG NUMBER LOGIC STYLE A Example: Series Series 0 - By others 0 - 35 PAR30/MH/SP(35W), 10° Spot 61 - 35 PAR30/MH/SP(35W), 30° Flood 62 - 70 PAR30/MH/SP(70W), 10° Spot 63 - 70 PAR30/MH/FL(70W), 40° Flood Floiab SE-63-BLW PC70-120 Optional Lene or Shielding (Up to Two can be Specified) -Finish Powder Coat Color Satin Wrinkle Bronze BZP BZW al, Pend,) Valvo STYLE B Auminu Aummum sAv Visit Varia Visit 360HD™ (Pat, Pend.) Mounting STYLE C artical ning Lock Rotational Aiming Look PAR30 -Metal Halide Lamp "HP bottom conduit entry standard. For side conduit entry, specify 'SE'. For concrete pour collar option specify 'CPC' For ballast information, see page 25. B-K LIGHTING

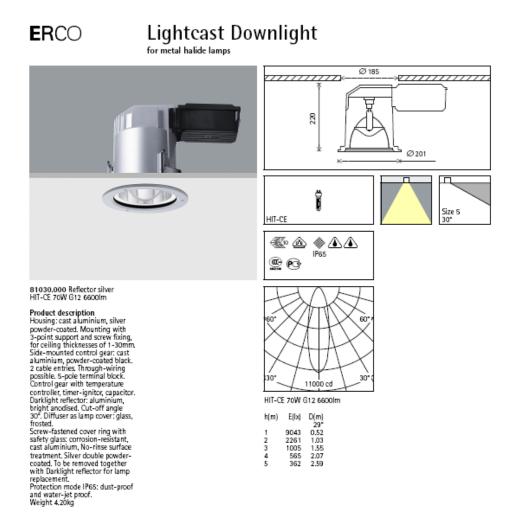
24



Luminaire Type QQ2 – Lamp Information

WORLDWIDE PARTNE	R.	Commercial Products & Solutions
SITE 3	SEARCH HOME	PRODUCTS EDUCATION / RESOURCES ELIGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteNe
Products > High Intensit	v Discharge > Ceramic Metal Hai	Ide > PAR > PAR30L > 45066
45066 – CMH39/PA	AR30LSP10	A⇒ PRINT
GE ConstantColor® Puls	seArc® CMH® Ceramic Metal Hal	lide PAR30L
		E1A.
GENERAL CHARACTE	RISTICS	
Lamp type	High Intensity Discharge -	
Bulb	Ceramic Metal Hallde PAR30L	Nex
Bulb		
Base Wattage	Medium Screw (E26) 39	
Rated Life	10000 hrs	
Bulb Material	Hard glass	Bulla Bara
Lamp Enclosure Type	Open or enclosed fixtures	Bulb Base
(LET)		
Additional Info	Ballast thermal protection, UV control	A CA
	control	
PHOTOMETRIC CHAR	ACTERISTICS	<u>View Larger</u>
Initial Lumens	2400	
Nominal Initial Lumens	61	ADDITIONAL RESOURCES
per Watt		Catalogs
Beam Spread	10 * 39600	Testimonials Brochures
Center Beam Candlepower (CBCP)	2900U	Product Brochures
Color Temperature	3000 K	<u>Ceramic Metal Hallde</u> <u>Color</u>
Color Rendering Index	81	HID Lamps
(CRI)		Application/Segment Brochures Ontractor Lighting
ELECTRICAL CHARAC	TERISTICS	Sell Sheets
Burn Position	Universal burning position	 GE ConstantColor® CMH® Lamps
Open Circuit Voltage	280 V	IES/Photometric Download MSDS (Material Safety Data Sheets)
(peak lead ballast)		MSDS (Material Safety Data Sneets) Disposal Policies & Recycling Information
(MIN) Onen Circuit Voltane	198 V	
Open Circuit Voltage (RMS lag ballast) (MIN)	150 V	
Warm Up Time to 90%	2 min	
Warm Up Time to 90%	2 min/3 min	
(MAX)	10 min	
Hot Restart Time to 90% (MIN)	10 min	
Hot Restart Time to	15 min	
90% (MAX)		
DIMENSIONS		
Maximum Overall	4.7500 in (120.6 mm)	
Length (MOL)	strate in (reate min)	
Nominal Length	4.600 ln (116.8 mm)	

Luminaire Type QQ2 – Ballast Information

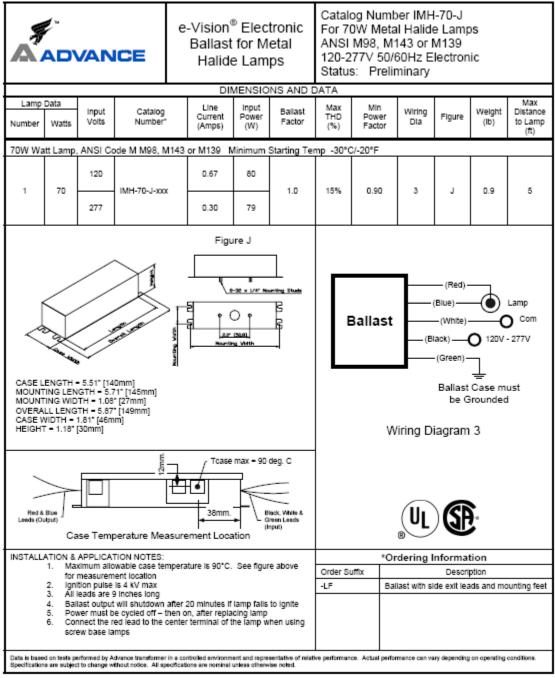

Advance + 10275 West Higgins Road + Rosemont, Illinois 60018-5603 + (847) 390-5000 + fax: 847-390-5109 + www.advancetransformer.com

A DIVISION OF PHILIPS ELECTRONICS NORTH AMERICA CORPORATION

Revised 1/16/06

Luminaire Type QQ3– Luminaire Cutsheet

ERCD Leuchten GmbH Postfach 2460 58505 Lüdenscheid Germany Tel: +49 2351 551 0 Fax: +49 2351 551 300 info@erco.com Technical Region: 230V/50Hz We reserve the right to make technical and design changes. Edition: 13.11.2007 Please download the current version from www.erco.com/81030.000

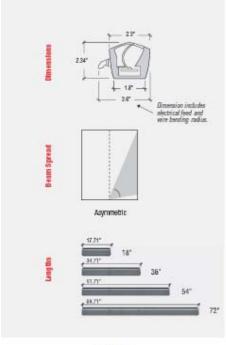


Luminaire Type QQ3 – Lamp Information

WORLDWIDE PARTN	ER			Commerci	al Products & Solutions
SITE	SEARCH HOME	~ PRODUCTS > E	DUCATION / RESOUR	ces ⊧u	GHTING APPLICATIONS
				Where to Buy F	AQs Contact Us EliteNe
	Discharge Commission Market	United Stanla Forded 7			
<u><pre>roducts > High Intensit</pre></u>	ty Discharge > Ceramic Metal	Hallde > <u>Single-Ended</u> > 1	<u>b</u> > 20016		
20016 – CMH70TU	I/830/G12				
	seArc® CMH® Ceramic Metal	Hallde T6			Calls to start
			Bulb	Base	
GENERAL CHARACTE	DISTICS		ି	(TTT)	
			1.1		
Lamp type	High Intensity Discharge - Ceramic Metal Halide		F	ΤŢ	
Bulb	Тб				
Base	BI-Pin (G12)			View Larger	
Wattage	70				
Rated Life	15000 hrs	ADDITIONAL RESOL	IRCES		
Bulb Material	Quartz	Catalogs Testimoniais			
Lamp Enclosure Type (LET)	Enclosed fixtures only	Brochures			
Additional info	UV control	 Product Brochures 			
Audional Into	ov control	 <u>Ceramic Metal H</u> Application/Segment 			
PHOTOMETRIC CHAR	ACTERISTICS	 Contractor Light 			
initial Lumens	6200	MSDS (Material Safe			
Mean Lumens	4700	Disposal Policies &	Recycling Informatio	on	
Nominal initial Lumens per Watt	88				
Color Temperature	3000 K				
Color Rendering Index (CRI)	83				
ELECTRICAL CHARAG	CTERISTICS				
Burn Position	Universal burning position				
Warm Up Time to 90% (MAX)	2 min/3 min				
Hot Restart Time to 90% (MIN)	10 min				
Hot Restart Time to 90% (MAX)	15 min				
DIMENSIONS					
Maximum Overall Length (MOL)	3.5600 In (90.4 mm)				
Light Center Length (LCL)	2.180 in (55.3 mm)				
PRODUCT INFORMAT	ION				
Product Code	20016				
Description	CMH70TU/830/G12				
ANSI Code	C139/M139				
Standard Package Standard Package	Case 10043168200162				

Luminaire Type QQ3 – Ballast Information

Advance • 10275 West Higgins Road • Rosemont, Illinois 60018-5603 • (847) 390-5000 • fax: 847-390-5109 • www.advancetransformer.com


A DIVISION OF PHILIPS ELECTRONICS NORTH AMERICA CORPORATION

Revised 1/16/06

Luminaire Types QQ4a and QQ4b- Luminaire Cutsheet

line[™] 2.0

Application

To Lighting's line series 2.0 is a low voltage linear floodight luminaire that utilizes high brightness LEDs, series 2.0 may be specified for interior or exterior applications and may be ordered in nominal lengths of 18°, 36°, 54°, and 72°. The precise asymmetric beam spread along the perpendicular axis of the facture is excellent for wall washing, sign lighting or pathway applications, series 2.0's patiented optical assembly is designed to practically eliminate stray light, making it perfect for applications where light pollution and/or light trespass are important design considerations.

series 2.0's low profile housing enables the luminaire to be integrated within "tight" architectural details while delivering high intensity illumination.

LEDs are similar to halogen light sources in that they are point sources that can reveal superior definition to three-dimensional objects and sparkle to reflective surfaces.

To ensures that each LED is driven with the proper current and voltage which enables the average rated life to be 50,000 hours at 70% of lamp lumen output. To ensure proper performance, architectural details should allow for ventilation and air flow around the flucture. Ambient temperature surrounding the flucture shall not exceed 120° F.

Light Output

Asymmetric series 2.0's patented optical assembly offers a fixture efficiency in excess of 83%. Refer to light output tables for footcandle values at various distances. Two luminous Intensities are available for white light. IEB format files may be obtained from the factory or downloaded from www.lolighting.com.

Standard Output 3000K White: 213 lms/ft 5000K White: 300 lms/ft High Output 3000K White: 320 Ims/ft 5000K White: 450 Ims/ft

Construction

Heavy-duty aluminum housing provides recommended heat sink requirements for LEDs. Precision optics are composed of a customized acrylic material offering excellent light transmission and UV stability. High strength adhesive bonds the housing and patented optical assembly, series 2.0 is UL Listed for wet locations.

Mounting Options

series 2.0 may be surface mounted, side surface mounted or surface mounted with field adjustability and lockable aiming, series 2.0 may not be mounted vertically in exterior applications.

Electrical

All factures are pre-wired and pre-assembled for easy installation, 8'-0*, 14 AWG electrical feed is side mounted to enable continuous row mounting. Universal 120v - 277v supply required for remote driver. Driver enclosures for interior or exterior applications may be provided by Io. 100W advance drivers may be remotely located up to 46'-0' (w/14 AWG), 71'-0'' (w/12 AWG) and 120'-0'' (w/10 AWG).

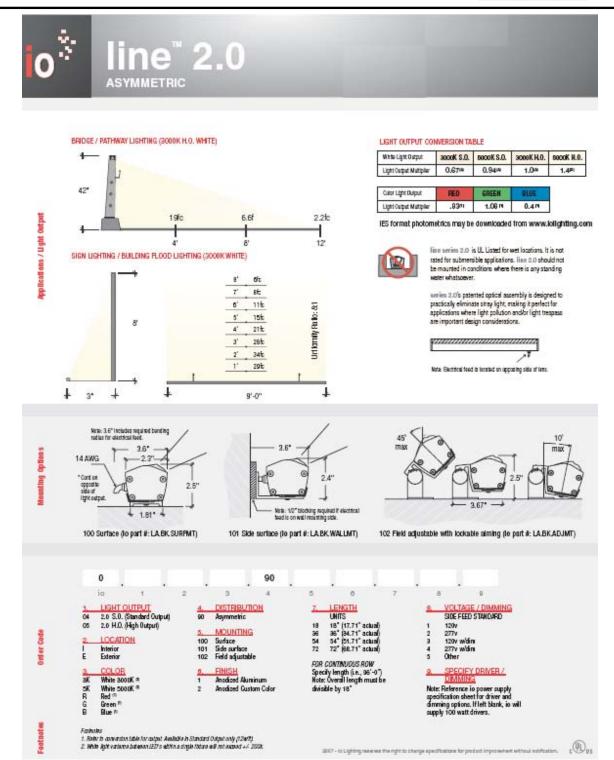
Power supply and dimming module must be specified asperately. For detailed information, see the LED Linear brochure or download the Power Supply specification sheet from www. folighting.com.

Power Consumption Standard Output: 12 w/ft

High Output: 17.8 w/ft

Power consumption does not include power supply losses, Consult to driver specification sheets for losses associated with each driver option.

Finish


Anodized aluminum finish is standard. Custom finishes may be available upon request.

.1007 - to Lighting reserves the right to change specifications for product improvement without extribution.

Du

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Luminaire Types QQ4a and QQ4b – Driver Information

Universal Outdoor Drivers for 12V and 24V LED systems

Orientation/Step Lighting Architectural Lighting Channel Letters Contour Lighting Edge Lighting

Applications

LEDs have evolved into a practical, flexible light source for a wide variety of illumination applications. Common LED products available in the market today are configured in a seriesparallel array – designed to be powered by a suitable 24vdc driver – which allows flexibility to connect variable load levels. These operating voltages have become the standard in the industry.

The Brain Behind the Bright Idea

Xitanium LED drivers from Advance are designed specifically for 24V LED systems and incorporate features that enable broad commercialization of end-use solidstate lighting products.

Features	Benefits
UL Class 2	Limited output voltage and current plus isolation for safe operation
UL Outdoor Damp location rated - IP 66	Fully potted for moisture resistance and thermal benefits
Ultra small, compact size	Facilitates new, low-profile fixture design
Extreme low temperature Performance (-40°C)	Allows use in any outdoor application
Generous high temperature capability (+60°C)	Margin flexibility to facilitate fixture design
Tightly regulated output (1% line, 5% load)	Consistent light output across line and load levels
5 year warranty	Peace of mind for your new products and for end usersfrom the industry's most trusted component maker
Powered by Advance	Advance is preferred by end users – Enhance the value of your product

Final Report - Appendices

Quick Selection Table

Catalog Number	Description	Application		
LEDINTA0024V41FO	Intellivolt 100 Watt 24Vdc Outdoor	 24Vdc LED Systems 		

LED Driver Specifications

	Input			Output			Case		
Catalog Number	Volts (V)	Power Max (W)	Current Max (A)	Power Max (W)	Voltage Nom (V)	Current Max (A)	Temp Max (°C)	Figure	Weight (Grams)
	120		0.98						
LEDINTA0024V41FO		117.0		100.0	24.0	4.1	90	Â	640
	Catalog Number LEDINTA0024V41FO	Catalog Number (V) 120	Power Power Volts Max (V) (W) 120 120 LEDINTA0024V41FO 230 117.0	Power Volts Power Max (V) Current Max (W) 120 0.98 LEDINTA0024V41FO 230 117.0 0.51	Power Current Power Max Max <th< td=""><td>Power Current Power Voltage Catalog Number Volts (V) Max (W) Max (W) Max (W) Max (W) Nom (V) 120 0.98 100.0 24.0</td><td>Power Catalog Number Power (V) Current Max (W) Power Max Power Max Voltage Max Current Max 120 0.98 0.98 100.0 24.0 4.1</td><td>Power Current Power Voltage Current Temp Catalog Number (V) (W) (Max Max Nom Max Max Max 120 0.98 117.0 0.51 100.0 24.0 4.1 90</td><td>Power Catalog Number Power (V) Current Max (W) Power Max (A) Voltage Max (W) Current Max (W) Temp Max (V) Temp Max (A) Temp Max (C) Figure 120 0.98 0.98 100.0 24.0 4.1 90 A</td></th<>	Power Current Power Voltage Catalog Number Volts (V) Max (W) Max (W) Max (W) Max (W) Nom (V) 120 0.98 100.0 24.0	Power Catalog Number Power (V) Current Max (W) Power Max Power Max Voltage Max Current Max 120 0.98 0.98 100.0 24.0 4.1	Power Current Power Voltage Current Temp Catalog Number (V) (W) (Max Max Nom Max Max Max 120 0.98 117.0 0.51 100.0 24.0 4.1 90	Power Catalog Number Power (V) Current Max (W) Power Max (A) Voltage Max (W) Current Max (W) Temp Max (V) Temp Max (A) Temp Max (C) Figure 120 0.98 0.98 100.0 24.0 4.1 90 A

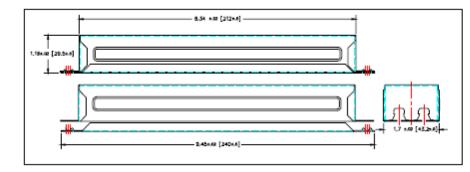
Total Harmonic Distortion: 20% max

Power Factor: 90% min

Line Regulation: 1% output variation across input voltage range

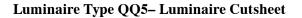
Load Regulation: 5% output variation across input voltage range

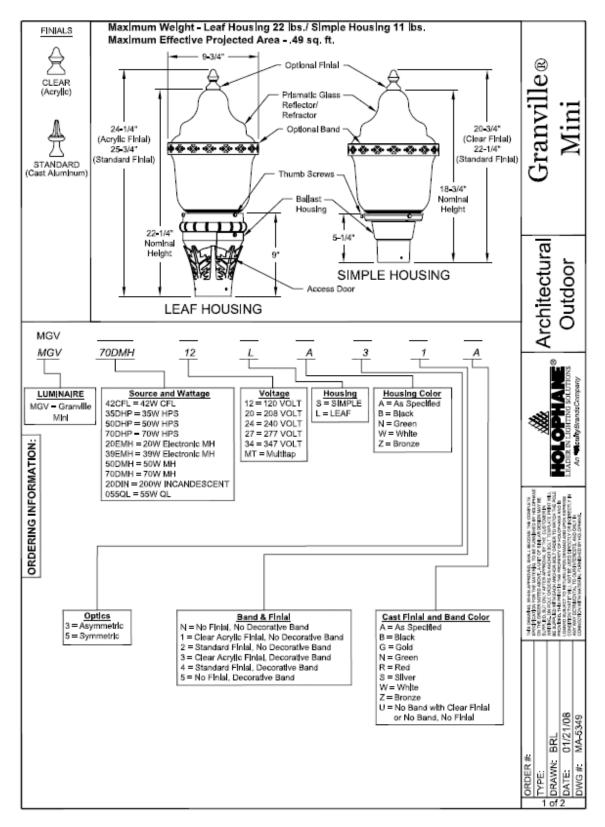
Current Crest Factor: 1.5 max


Environmental Protection: IP66 outdoor rated

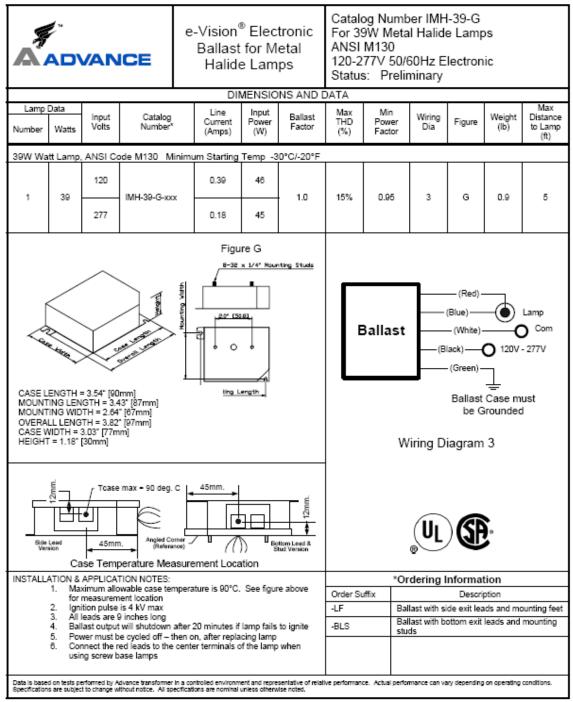
EMI: FCC47 SubPart15, CISPR15 and CISPR22 Class A

Protection: Meet UL1310 for Class 2; Inherent short-circuit protection, self-limited; overload protected; 3.2KV output insulation AC Input and DC Output: 2 (0.78mm²) Solid Copper Wires, 15cm long


Dimensions


Fig. A

Advance, A Division of Philips Electronics North America · 10275 W Higgins Road · Rosemont, IL 60018 · USA Tel: + 1 847 390-5205 · Fax: + 1 847 390-5264 · Revised 09/05PJJ

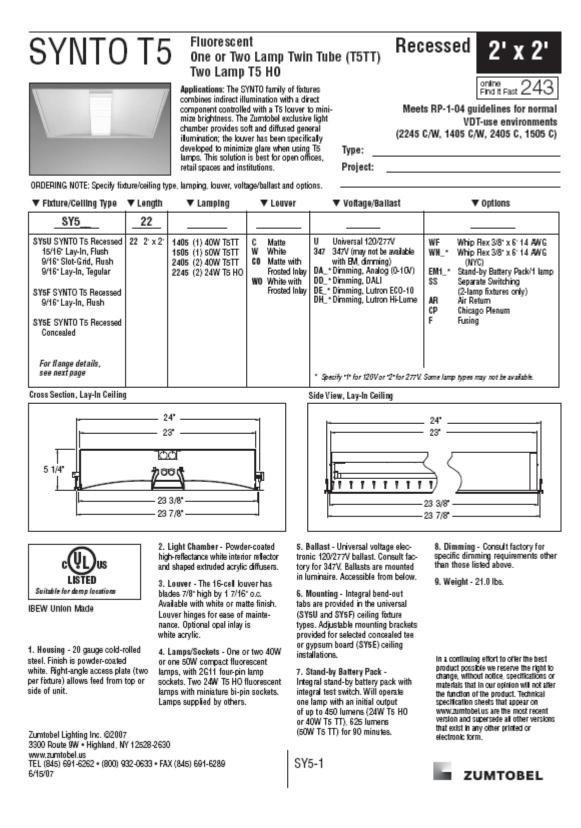


Luminaire Type QQ5– Lamp Information

WORLDWIDE PARTNE		Commercial Products & Solution
SITE S	EARCH HOME *	PRODUCTS EDUCATION / RESOURCES UIGHTING APPLICATIONS
		Where to Buy FAQs Contact Us Elite
Products > High Intensity	/ Discharge > Ceramic Metal Hai	lide > PAR > PAR30L > 45066
45066 – CMH39/PA	R30LSP10	At PRINT
GE ConstantColor® Puls	eArc® CMH® Ceramic Metal Hal	
		505.
GENERAL CHARACTE	RISTICS	
Lamp type	High Intensity Discharge - Ceramic Metal Hallde	
Bulb	PAR30L	. HEL
Base	Medium Screw (E26)	
Wattage	39	
Rated Life	10000 hrs	· · · · · · · · · · · · · · · · · · ·
Bulb Material	Hard glass	Bulb Base
Lamp Enclosure Type (LET)	Open or enclosed fixtures	
Additional Info	Bailast thermal protection, UV control	A 🖸
PHOTOMETRIC CHARA	ACTERISTICS	View Larger
initial Lumens	2400	
Nominal initial Lumens per Watt	61	ADDITIONAL RESOURCES
Beam Spread	10 *	Testimoniais
Center Beam Candlepower (CBCP)	39600	Brochures Product Brochures
Color Temperature	3000 K	Ceramic Metal Halide <u>Color</u>
Color Rendering Index (CRI)	81	 <u>HID Lamps</u> Application/Segment Brochures
	TEDIATION	Contractor Lighting Sell Sheets
ELECTRICAL CHARAC Burn Position	Universal burning position	 GE ConstantColor® CMH® Lamps
Open Circuit Voltage	280 V	IES/Photometric Download
(peak lead ballast) (MIN)	200 0	<u>MSDS (Material Safety Data Sheets)</u> <u>Disposal Policies & Recycling Information</u>
Open Circuit Voltage (RMS lag ballast) (MIN)	198 V	
Warm Up Time to 90%	2 min	
Warm Up Time to 90% (MAX)	2 min/3 min	
Hot Restart Time to 90% (MIN)	10 min	
Hot Restart Time to 90% (MAX)	15 min	
DIMENSIONS		
Maximum Overall Length (MOL)	4.7500 in (120.6 mm)	-
Nominal Length	4.600 ln (116.8 mm)	

Luminaire Type QQ5 – Ballast Information

Advance + 10275 West Higgins Road + Rosemont, Illinois 60018-5603 + (847) 390-5000 + fax: 847-390-5109 + www.advancetransformer.com


A DIVISION OF PHILIPS ELECTRONICS NORTH AMERICA CORPORATION

Revised 1/16/06

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Luminaire Type RR1– Luminaire Cutsheet

Horizontal Angla

45° 90°

1358 1358

1345

1192 1204 339.3

1050

946 1077 586.2

719 804 544.1

458 479 396.7

253

124 135 133.8

25

0 0 Zonai Lumens

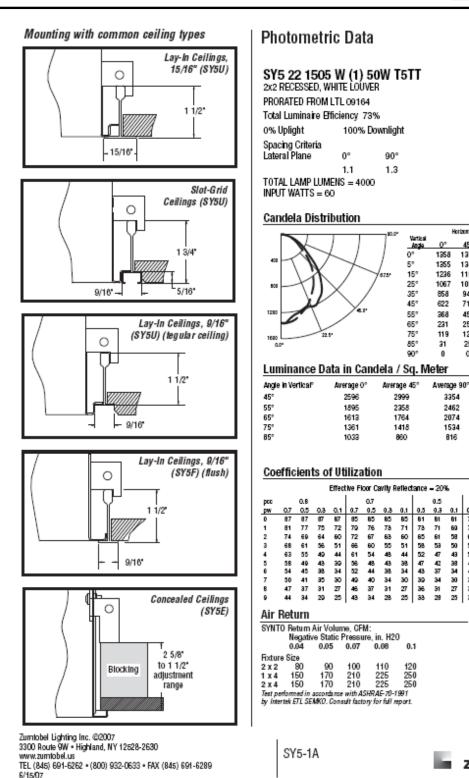
30.5

1316 117.1

1211 502.6

297 256.9

24


0.3

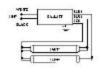
78 67

ZUMTOBEL

30 28

0.5 0.3 0.1

Luminaire Type RR1– Lamp Information


80	ESEARCH HOME	
		Where to Buy FAQs Contact Us El
Compact	Fluorescent > Plug-In > High Lun	man Blave
-roducis - compact	riddrescent > Pidg-III > Filgii Cult	<u>HEIL DIAXE</u> > 10503
16953 – F4030B GE Blax® T5 - Facilit	XSPX30 10P les; Retall Display; Hospitality; Offi	Ice; Restaurant; Warehouse
High Color Rendering Energy Savings		1
GENERAL CHARAC	TERISTICS	
Lamp type	Compact Fluorescent - Plug-In	
Bulb	Т5	
Заве	4-Pin (2G11)	A
Wattage	40	
/oltage	126	Bulb Base
Rated Life	20000 hrs	
Starting Femperature (MIN)	10 °C (50 °F)	
Primary Application	Facilities; Retall Display; Hospitality; Office; Restaurant; Warehouse	View Larger
PHOTOMETRIC CH	RACTERISTICS	ADDITIONAL RESOURCES
initial Lumens	3150	
Mean Lumens	2840	Catalogs Testimoniais
Nominal Initial Lumens per Watt	78	Application/Segment Brochures
Color Temperature	3000 K	Restaurant Lighting Retail Lighting
Color Rendering Index (CRI)	82	Office Lighting Healthcare Lighting
ELECTRICAL CHAR		Contractor Lighting Product Brochures Industrial Lighting
Lamp Current	0.320 A	Disposal Policies & Recycling Information
Current Crest Factor (MAX)	1.7	
DIMENSIONS		
Maximum Overall Length (MOL)	22.5000 ln (571.5 mm)	
Nominai Length	22.500 in (571.5 mm)	
PRODUCT INFORM	ATION	
Product Code	16953	
Description	F4030BXSPX30 10P	
NSI Code	60901-IEC-6240-2	
Standard Package	Master	
Standard Package GTIN	10043168169537	
Standard Package Quantity	40	

Luminaire Type RR1 – Ballast Information

WORLDWIDE PARTN	ER			Comme	rcial Products & Solution:
SITE	SEARCH HOME	~ PRODUCTS > EDUCAT	TION / RESOUR	CES I	LIGHTING APPLICATIONS
					FAQs Contact Us EliteNe
Products > <u>Ballasts</u> > <u>C</u>	ompact Fluorescent > Plug-in >	80681			
80681 – C240SI27 GE CFL Electronic Star	7RH-IP Idard Instant Start Ballast				
 Electronic compact flu fluorescent applications 	orescent ballasts for all general				
Low profile case		-			
GENERAL CHARACTE		, <u> </u>			
Application	2- FT40W/2G11- IS 277				
Category	Compact Fluorescent	_			
Ballast Type	Electronic - Standard Instant Start	_		1. Constanting	
Starting Method	Instant start			View Larg	er
Lamp Wiring	Series				
Line Voltage Regulation (+/-)	10 %	DIMENSIONS Case dimensions			_
Ambient Temperature (MAX)	105 °F (41 °C)	Length (L) Width (W)	8.3 ln (211.) 2.4 ln (60.9)	1	
Case Temperature (MAX)	70 °C (158 °F)	Height (H)	1.6 ln (39.3		
Ballast Factor	Normal	Mounting dimensions	0.51-0044	10 mm ⁻¹	
Power Factor Correction	Passive	Bracket Length (BL) Mount Length (M)	9.5 ln (241.) 8.9 ln (225.)		_
Sound Rating	A (20-24 decibels)	Mount Width (X or F)	1.7 In (42.8)	7 mm)	
Enclosure Type	Metal	Mount Slots (MS)	0.3 ln (7.92	mm)	
Additional Info	End of Life Protection (EOL), Thermally protected	Weight Exit Type	2.70 lbs Side		
ELECTRICAL CHARA	CTERISTICS	Remote mounting distance to lamp	12 ft		_
Supply Current Frequency	50 Hz/60 Hz	Remote Mounting Wire Gauge	18 AWG		
PRODUCT INFORMAT	10N	Lead lengths	Qty Exit	Length (± 1 In.)	
Product Code	80681	Blue	1 Right	33.0 ln (838	
Description	C240SI277RH-IP			mm)	
Standard Package	Master	White	1 Left	25.0 ln (635 mm)	
Standard Package GTIN	30043168806818	Red	1 Right	33.0 ln (838 mm)	
Standard Package Quantity	10	Black	1 Left	25.0 ln (635 mm)	
Sales Unit	Individual Pack				
No Of Items Per Sales Unit	1				
No Of Items Per Standard Package	10				
-	043168805817				

View Larger

SPECIFICATIONS BY LAMP & WATTAGE

Lamp	# of Lamps				Ballast	Ballast Efficacy Factor	Factor	Factor		Min. Starting Temp (°F/°C)	
FT40W/4P	1	277	40	0.17 A	1.02	2.55	90	1.7	20	50.0 / 10	System specs
	2	277	67	0.27 A	0.88	1.31	95	1.7	20	50.0 / 10	System specs

Safety & Performance UL Type 1 Outdoor

FCC - CLASS A Non-Consumer

See list of cautions & warnings.

UL Type HL

UL Class P 🖲 UL Lisked 🗑 CSA

NOTES

WARRANTY INFORMATION

GE Lighting warrants to the purchaser that each ballast will be free from defects in material or workmanship for period as defined in the attached documents from the date of manufacture when properly installed and under normal conditions of use.

Download full warranty

ADDITIONAL RESOURCES

Catalogs Testimoniais

This product contains an End of Lamp Life Safety Shutdown circuit. When replacing a lamp, the power to the ballast must be re-cycled for 5 seconds to reset the shutdown circuit.

Brochures Application/Segment Brochures • Healthcare Lighting • Office Lighting

- Retail Lighting Product Brochures
- Industrial Lighting
- Disposal Policies & Recycling Information

Photos are representational only. Sizes, shapes and labels of ballast may vary.

Return To Top

Luminaire Type RR2– Luminaire Cutsheet

DESCRIPTION

Series 81 can be used individually or in illuminated rows and patterns, each fixture is uniquely suited to achieve many functional and aesthetic spatial effects. Shielding locks in place without hardware. The trim is rigid "U" shaped, doubled formed with a 3/8" regress soft lit edge.

Catalog #	Туре
Project	
Comments	Date
Prepared by	

SPECIFICATION FEATURES

A ... Construction

20-gauge steel housing. Nominal 3' or 4' illuminated sections.

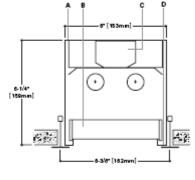
or 4 munimated a

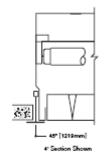
B ... Shielding Acrylic diffuser or lens, parabolic or bold baffle shielding. C ... Electrical 120, 277, 347 or Universal Voltage electronic ballast, Fixtures and electrical components certified to UL and CUL standards.

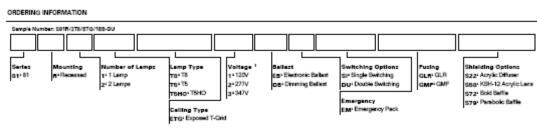
D ... Finish

Durable, low gloss, white, powder coated acrylic finish. Mounting

Recessed. (ETG) Exposed T-Grid only.


NEO-RAY[™]

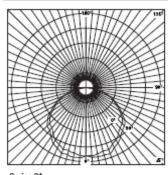

81


1 & 218 1 & 215 1 & 215HO

Recessed Direct

Light Distribution Indirect - 0.0% Direct - 100.0%

Nations 1 Not all options available. Please consult your Cooper Lighting Representative for availability.



Specifications and Dimensions subject to change without notice.

ADN041923 01/28/2008 2:15:21 PM

PHOTOMETRICS

Series 81 (2) F40T12RS/WW 3200 Lumens Efficiency 38.4% Test Report #3010.0

Coefficients of Utilization

re		8	0%			50%	>		30%	
rw	70	50	30	10	50	30	10	50	30	10
RCR										
1	43	41	40	39	39	35	37	38	37	36
2	40	38	35	34	36	34	33	34	33	32
3	37	34	32	30	32	31	29	31	30	28
4	35	31	28	26	30	27	26	29	27	25
5	32	26	25	23	27	25	23	26	24	23
8	30	26	23	21	25	22	21	24	22	20
7	28	24	21	19	23	20	19	22	20	18
8	25	22	19	17	21	18	17	20	18	17
9	24	20	17	15	19	17	15	19	16	15
10	23	18	15	14	15	15	13	17	15	12

Zonal Lumen Summary

Zone	Lunens	%Lemp	SForture					
0-30	1069	16.7	43.4					
0-40	1550	24.7	64.2					
0-60	1814	55.7	65.9					
0-90	2460	35.4	100.0					
90-180	0	0.0	0.0					
0-180	2460	35.4	100.0					
Total Lui	Total Luminaire Efficiency = 38.4%							

Candela

Asgle	Along II	45 °	Across 1
0	1596	1596	1596
5	1555	1596	1624
10	1445	1491	1526
15	1359	1395	1462
20	1239	1275	1373
25	1055	1099	1235
30	929	979	1156
35	721	792	965
40	551	652	768
45	351	471	568
50	270	355	445
55	228	263	363
60	179	195	340
65	140	152	261
70	92	102	162
75	63	71	95
80	37	43	51
85	14	22	21
90	0	0	0

81

MOUNTING INFORMATION

SHIELDING INFORMATION

822 Acrylic Diffuser 3/16" thick, matte white finish, rabbeted joints, no light leaks.

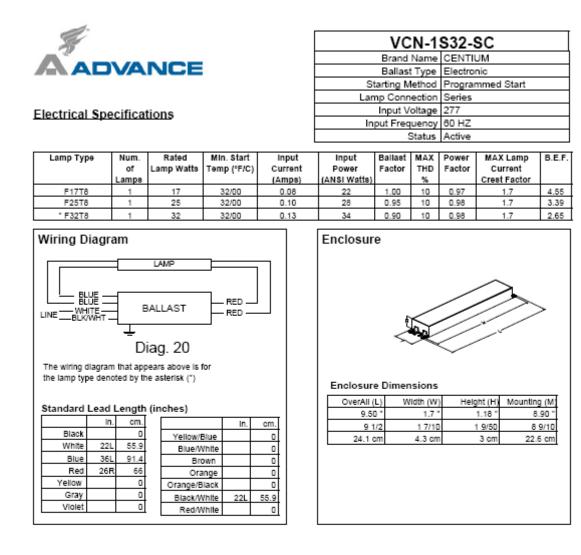
858 Acrylic Lens 1/8" thick, clear acrylic prismatic lens.

972 Bold Baffle 1* high x 1.2*o.c., 3/16* thick aluminum baffle, continuous and unbroken, no visible joints.

879 Parabolic Baffle 1-1/4" high blade, 2.4" o.c., semi-specular lowbrightness Pearlescent Aluminum baffle. Continuous and unbroken, no visible joints.

Specifications and Dimensions subject to change without notice. New Ray - Cademar Find Coder - 1121 Highway 74 Seath - Packies City, GA 3809 - TEL 778-08.409 - FAX 778-08.4091

ADN041923 01/28/2008 2:15:21 PM

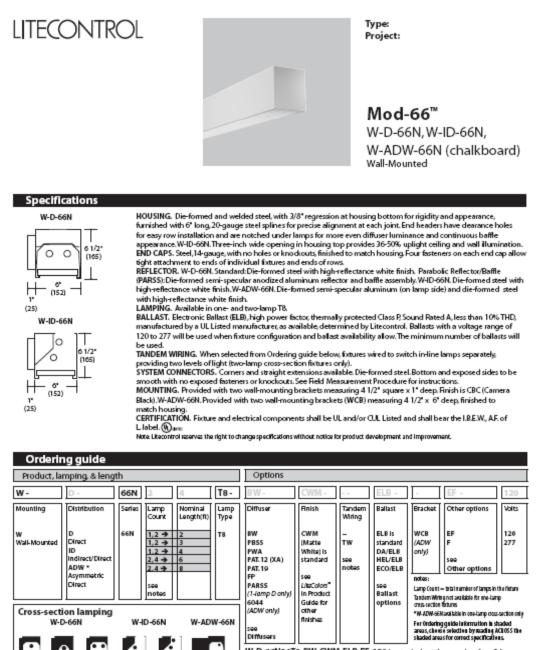


Luminaire Type RR2– Lamp Information

WORLDWIDE PARTNER		Commercial Products & Solutions
SITE SEARCH	HOME -	PRODUCTS EDUCATION / RESOURCES UGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteNet
Products > Linear Fluorescent >	 <u>Straight Linear</u> > <u>T8</u> > 2 	26666
26666 – F32T8/SP30/EC GE Ecolux® Starcoat® T8	0	
Passes TCLP, which can lowe	r disposal costs.	
High Color Rendering Maste Federal Minimum Efficiency	Observation	
Meets Federal Minimum Efficiency	Standerda	
GENERAL CHARACTERISTIC	s	
Lamp type	Linear Fluorescent -	
much the	Straight Linear	
Bulb	Т8	
Base	Medium BI-Pin (G13)	Bulb Base
Wattage	32	
Voltage	137	
Rated Life	20000 hrs	
Rated Life (Instant start) @ Time	20000 h @ 3 h 24000 h @ 12 h	View Larger
Rated Life (rapid start) @ Time	24000 h @ 12 h	
Bulb Material	Soda Ime	ADDITIONAL RESOURCES
Starting Temperature (MIN)	10 °C (50 °F)	Catalogs
Additional Info	TCLP compilant	Testimoniais
PHOTOMETRIC CHARACTER	ISTICS	Brochures Product Brochures
initial Lumens	2800	Color Ecolux
Mean Lumens	2660	Ecolux (Environmental)
Nominal Initial Lumens per Watt	87	Industrial Lighting Linear Fluorescent Lamps
Color Temperature	3000 K	Application/Segment Brochures Contractor Liphting
Color Rendering Index (CRI)	78	Healthcare Lighting
S/P Ratio (Scotopic/Photopic Ratio)	1.3	Office Lighting Retail Lighting
nawy		MSDS (Material Safety Data Sheets)
ELECTRICAL CHARACTERIS	TICS	Disposal Policies & Recycling Information
Open Circuit Voltage (rapid start) Min @ Temperature	315 V @ 10 °C	GRAPHS & CHARTS
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25	Spectral Power Distribution
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5	
Current Crest Factor (MAX)	1.7	
DIMENSIONS		
Maximum Overall Length (MOL)	47.7800 in (1213.6 mm)	
Minimum Overall Length	47.6700 in (1210.8 mm)	
Nominal Length	48.000 ln (1219.2 mm)	

Luminaire Type RR2– Ballast Information

Revised 11/13/2001


Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Luminaire Type RR3– Luminaire Cutsheet

W-D-66N24T8-BW-CWM-ELB-EF-120 is a typical catalog number for a 2-lamp (2 lamps in cross-section), 4-foot long TB fixture with white blade baffle, Matte White finish, electronic balast emergency fluore scent balast 120 volts. W-ADW-66N14T8-6044-CWM-ELB-WCB-EF-120 is a typical catalog number for

a 1-lamp (1-lamp in cross-section), 4-foot long T8 fixture with a 6044 lens, Matte White finish, electronic ballast, chalkboard mounting brackets, emergency fluorescent ballast, 120 voks.

2-T8

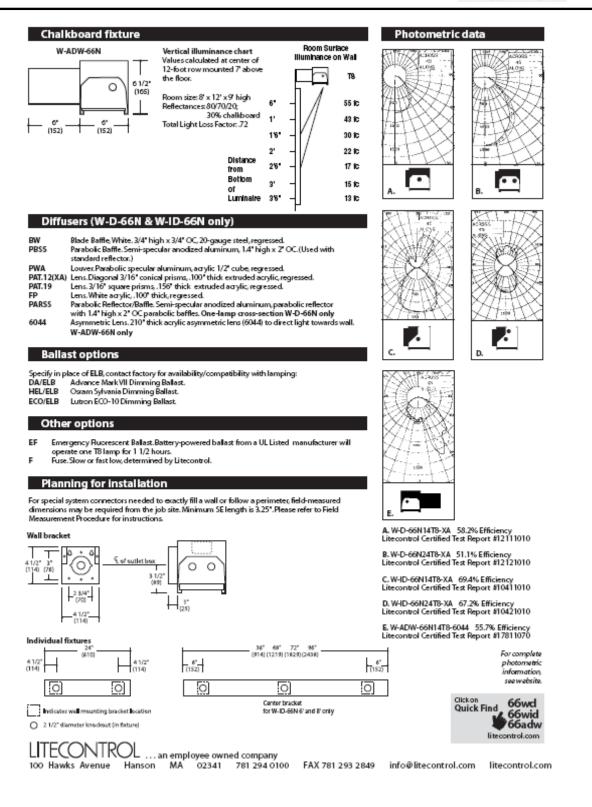
1-T8

2-T8

Questions to Ask 1. 120 or 277 volt? 2. Row information, including desired fixture lengths?

1-T8

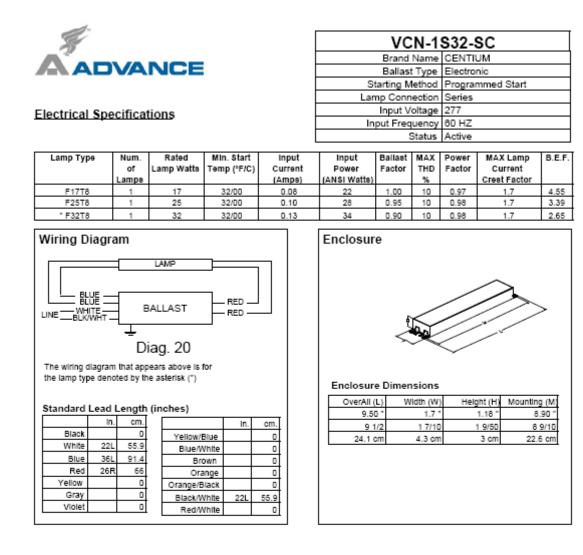
- 3. Diffuser type? 4. White, LiteColor, or special color? 5. Tandem wiring?
- 6. Other options?


lite control.com

1-T8

1-T8

PARSS



Luminaire Type RR3– Lamp Information

WORLDWIDE PARTNER		Commercial Products & Solutions
SITE SEARCH	HOME -	PRODUCTS EDUCATION / RESOURCES UGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteNet
Products > Linear Fluorescent >	 <u>Straight Linear</u> > <u>T8</u> > 2 	26666
26666 – F32T8/SP30/EC GE Ecolux® Starcoat® T8	0	
Passes TCLP, which can lowe	r disposal costs.	
High Color Rendering Maste Federal Minimum Efficiency	Observation	
Meets Federal Minimum Efficiency	Standerds	
GENERAL CHARACTERISTIC	s	
Lamp type	Linear Fluorescent -	
much the	Straight Linear	
Bulb	Т8	
Base	Medium BI-Pin (G13)	Bulb Base
Wattage	32	
Voltage	137	
Rated Life	20000 hrs	
Rated Life (Instant start) @ Time	20000 h @ 3 h 24000 h @ 12 h	View Larger
Rated Life (rapid start) @ Time	24000 h @ 12 h	
Bulb Material	Soda Ime	ADDITIONAL RESOURCES
Starting Temperature (MIN)	10 °C (50 °F)	Catalogs
Additional Info	TCLP compilant	Testimoniais
PHOTOMETRIC CHARACTER	ISTICS	Brochures Product Brochures
initial Lumens	2800	Color Ecolux
Mean Lumens	2660	Ecolux (Environmental)
Nominal Initial Lumens per Watt	87	Industrial Lighting Linear Fluorescent Lamps
Color Temperature	3000 K	Application/Segment Brochures Contractor Liphting
Color Rendering Index (CRI)	78	Healthcare Lighting
S/P Ratio (Scotopic/Photopic Ratio)	1.3	Office Lighting Retail Lighting
nawy		MSDS (Material Safety Data Sheets)
ELECTRICAL CHARACTERIS	TICS	Disposal Policies & Recycling Information
Open Circuit Voltage (rapid start) Min @ Temperature	315 V @ 10 °C	GRAPHS & CHARTS
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25	Spectral Power Distribution
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5	
Current Crest Factor (MAX)	1.7	
DIMENSIONS		
Maximum Overall Length (MOL)	47.7800 in (1213.6 mm)	
Minimum Overall Length	47.6700 in (1210.8 mm)	
Nominal Length	48.000 ln (1219.2 mm)	

Luminaire Type RR3– Ballast Information

Revised 11/13/2001

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

TYPE:

color, long life, and low radiant heat. Dimming and emergency ballast options are available. Lamp module and optical element can be changed after

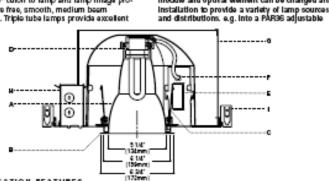
F---Electrical Kayed quick connect provides easy lamp module

O...Frame/Nonsing Hot dipped galvarized 20 gauge stael frame with built in 1/2 inch plaster ip. Gunsights allow for consistent alignment. Aluminum .022 thick housing allows for heat dissipation and reduces weight.

18 cubic inches, listed for 4#12 AWG or 6#14 AWG

90° C additional feed through conductors, has six

It- Part Hangers No Flext bar hangers with positive locking, for use with wood, engineered wood and steal frame joints speed up to 24° O.C. ship with platform for use in T-bar ceilings order accessory MBCLP clips. Nailess barb and locator lip provide consistent installation balant.


Thermally protected, IP labeled, for use in direct contact with insulation. Meets Washington State Air tight requirements, 1955 CABO Model Energy

UL and cUL listed, standard damp label, IBEW union made.

Luminaire Type SS1– Luminaire Cutsheet

IRiS CATALOG#: DESCRIPTION Specification grade 32 Watt triple tube compact flu-orescent fixture rated for direct contact with insula-

tion. The 50° cutoff to lamp and lamp image pro-vides a glare free, smooth, medium beam distribution. Triple tube lamps provide excellent

installation.

H.Jusction Box

1/2 inch pryouts.

installation height.

Codes

Code

Labela

SPECIFICATION PEATURES

A -- Reflector .040 thick aluminum spun parabolic reflector in Hidescence-free Clear, Gold, Haze, Warm Haze Alzat* or painted Gloss White finish. Special cone colors listed below

R---Flange

Self flange reflector or die-cast flange with either matte while or clear coat flinish. Die-cast flanges are easily removed for field pointing. Bements are layed for proper insertion.

C...Attachment

Positive torsion springs pull flange tight to ceiling. Mechanical light trap eliminates spill light at edge of flange or reflector.

D.--Socket

4 pin G24q3 base for 32W PLT, TBX and TTT lamps. Fatigue free stainless steel spring ensures positive lamp retention. Fixed socket height ensures consisient lamp position.

How we consistent lamp position.
 E--Electronic Bulliant
 Thermally protected, oursent controlled electronic
 balast produces full light output and raied lamp
 life. For 32W and 2EW triple tube lamps. Provides
 licter-free and noise-free operation and starting
 with 120 or 277 voti input. Meets stringent Class B
 requirements, FCC part 18, for non-commercial
 applications. M32T Lutron for use with 32W lamp
 only.

- -- -

ORDERING INFORMATION Complete unit consists of a platform, models and element

.

P5 M32T	Platform	h Flange	Lamp Optical Module Element	Accessories
Airtight IC Compact Downlight CuClear CCH_Docolate die-cart On T Ser Cl Rated Rubracent Reflector H_Hare Hare Srubset (for 10 Unit Housing Balast GuGoid BU_Blush Flange PL55_Plant M32TLutron_ 22W Tu Wire WMH_Warm Hare BU-Bush Discast for Mac 2 Dimmable Wuldiose White GPuGraphite Discast for Mac 2 Celing Falast MWWMatte White GPuGraphite Start Celing MdCs Fus	PS_S" Artight IC Rated Housing	CCH_Chootists di-cast Hate SF_Set Hate SF_Set DU_Blush Filange DU-Bush Hate RAW_Natural SF_Graphits Di-cast SFU_Graphits SFW_F_Set Hate Filange PI_PIne Filange DN_PIne Hate White DNL_DIne Hate White St_Set bit got one St_St_St_Set bit got one St_St_St_St_Set bit got one St_St_St_St_Set bit got one St_St_St_St_St_Set bit got one	M2T-32/20W EST=5" Compact Ruomacont Reflector Pallant M2TLutron= 23W Tu Wire Dimmable Ballant	RMC5- Flush Mount Collar

). 5⊮' Î Π P5 M32T E5T

32W TRIPLE Compact Fluorescent

5" DOWNLIGHT

10.24 (All 100) - 2017 Celling Cutout 6 182 (199nm)

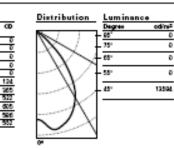
ENERGY DATA Mazt Input Power 120V = 36W Input Current (Max.):

120V = .306A Power Factor: 120V = > .98 THD: 120V = < 10%

M32T Lutron

Input Power 120V - 36W Input Current (M ax.): 120V = .33A Power Factor: 120V = > 55 THD: 120V = < 20%

ADIESCOO


Unit Number: F5-M32T-EST_

•

16

PHOTOMETRICS

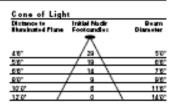
P5-M32T-8 Test No.	ESTC Hasse7	Candola Vertical
Lamp: Lumena:	32W PLT 2400	<u>****</u>
Cutoff:	50"	75
Spacing: Efficiency: Unit LPW:	1.1 33.7% 22.4	55 45
UNK LI'M.	22.4	35 35
		15

Ð

Ð

Ð

0

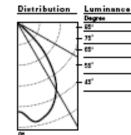

odiine² D

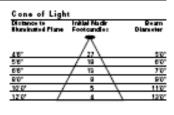
Ð

Ð

122

10606




Come	Lare end	*Lanp	Miursiesire	Ceiling Reliectasee			100 C		x	×.	8	×.	3	*
3-30	5 55	19.4	57.6	Wall Reflectasee	70	50	20	10	50	10	50	90	50	1
1-40	680	29.9	85.5	Beore Cavity Ratie										
1420	900	22.4	22.1	0	40	40	40	40	29	22	27	27	36	- 26
190	910	22.7	100.0	- 1	28	- 27	27	- 22	1	28	28	34	24	- 20
KD-180	0	0.0	0.0	1	77	28	×	20	34	22	20	32	22	- 21
191	910	22.7	100.0	3	25	20	21	20	32	20	21	29	21	- 23
					22	21	29	23	30	27	20	27	5	- 27
				5	31	29	27	25	29	25	28	25	2	25
					30	27	25	24	27	28	28	22	36	22
				,	29	25	22	22	25	22	25	22	м	2
					27	22	21	20	22	20	22	20	22	21
				9	25	22	20	12	22	12	21	10	21	- 18
				10	24	20	12	12	20	12	20	7	20	12

Candolan Vertical P5-M32T-E5TC Tent No. Host CD H36107 Angle 28W PLT Lamp: Lumens 0 1800 0 95 Cutoff: Specing: Efficiency: Unit LPW: 50° 1.1 38.7% 23.2 65 55 45 0 103 305 450 566 25 572

Ð

540

Come	Lane engl	SLMMp	Manufactor	Ceiling Reliectus re		1	2004 C		X	*		×.	31		- 05
3-30	426	22.7	60.9	Wall Reflectases	20	50	20	1.	50	1.	50	90	50	1.	
3-40	616	342	87.9	Beore Cavity Ratie											
140	8	39.9	22.6	0	6	S	46	42	45	45	43	42	41	41	- 26
3-90	701	29.9	100.0	1	44		42	42	42	41	41	40	40	28	27
20-190	٥	0.0	0.0	1	425	41	29	28	40	28	28	17	10	26	25
3-160	701	39.9	100.0	3	41	- 28	20	25	28	28	- 27	34	2	- 24	- 22
					29	26	x	20	34	22	28	22	ж	22	- 21
				5	27	ж	22	30	22	30	20	30	32	25	25
					25	22	20	22	32	22	21	29	30	28	27
				,	22	20	22	2	30	2	25	36	39	28	25
					31	28	12	24	29	25	27	34	27	24	22
				9	30	26	25	22	36	22	25	22	25	22	21
				10	29	24	22	21	24	21	24	21	24	20	21

Leminance: To convert adim² to faatlamberts, multiply by 0.2919

OU Notes Formulae • resistained illuminance-lamp lamenais CU s light loss factors room area

Concert Light: • Beam clameter into 50% of modimum toolcandies, rounded to the nearest half-foot. • Footcand to values an initial. Apply appropriate light loss factors where neoescary. See page 6645 of catalog.

total number of laminalization com area a maintained illuminance Tamp laments co a signification record

OU data based on 20% effective floor cavity reflectance.

New Constitutions and Cleversing system is charge without noise

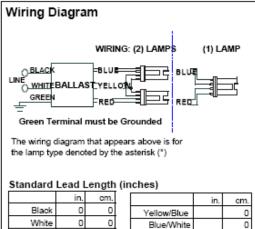
Visit our web site at www.comperlighting.com

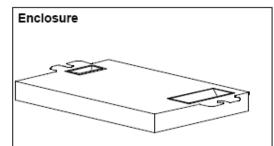
Customer Fint Canter 1121 High any 75 South Paachtnee City, GA 30269 770,695,660 FAX 770 455,587 ACE 2070 Cooper Lighting 5925 Nickaughtin Rd. Missiaaauga, Ontario, Canada LSR 199 605,507,660 FAX 605,559,769

Final Report - Appendices

Luminaire Type SS1– Lamp Information

	TNER	Commercial Products & Solution
s	TE SEARCH HOME	PRODUCTS + EDUCATION / RESOURCES + LIGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteN
Broductr - Compact	Elucroscont - Dius In - Triple Bised	0 - T4 - 07530
Producis > Compact	Fluorescent > Plug-In > Triple Blaxi	<u>N 14</u> 3 31020
97630 – F32TB) GE Ecolux® Blax® T	(/830/A/ECO '4 - Facilities; Retall Display; Hospital	Ity: Office; Restaurant; Warehouse
High Color Rendering		Bulb Base
Energy Savings		
GENERAL CHARAG	CTERISTICS	
Lamp type	Compact Fluorescent - Plug-In	Contraction Contraction
Bulb	Τ4	View Larger
Base	GX24q-3	
Wattage	32	ADDITIONAL RESOURCES
Voltage	120/100	Catalogs
Rated Life	12000 hrs	Testimoniais
Starting Temperature (MIN)	0 °C (32 °F)	Brochures Product Brochures e Ecolux
Cathode Resistance	2.700 Ohm	Ecolus (Environmental) Sell Sheets
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h	Fast Warming Brax® T/E 32W with Amaigam
Additional Info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant	Disposal Policies & Recycling Information
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse	Spectral Power Distribution
PHOTOMETRIC CH	ARACTERISTICS	E 100
initial Lumens	2200	
Mean Lumens	1850	100 mm
Nominal Initial Lumens per Watt	68	
Color Temperature	3000 K	
Color Rendering Index (CRI)	82	
ELECTRICAL CHAP	RACTERISTICS	Wavelength (ver)
Current (max)	5.2500 A	
Open Circuit Voltage (after preheating) (MAX)	265 V	
Open Circuit Voltage (MIN)	515 V	
Lamp Current	0.320 A	
Preheat Voltage (MIN)	4 V	-
Current Crest Factor (MAX)	1.7	-
Supply Current	20000 Hz	


Luminaire Type SS1– Ballast Information


Electrical Specifications

ICF2S26M1	LSQS@277
Brand Name	SMARTMATE
Ballast Type	Electronic
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	120-277
Input Frequency	50/60 HZ
Status	Active

Lamp Type	Num. of	Rated	Min. Start	Input	Input Power	Ballast Factor	MAX	Power Factor	MAX Lamp Current	B.E.F.
	Lamps	Lamp Watts	Temp (°F/C)		(ANSI Watts)		1HD %	Factor	Current Crest Factor	
CFQ26W/G24Q	1	26	0/-18	0.10	27	1.00	10	0.99	1.7	3.70
CFQ26W/G24Q	2	26	0/-18	0.19	51	1.00	10	0.99	1.7	1.96
CFTR26W/GX24C	1	26	0/-18	0.11	19	1.10	10	0.99	1.7	5.79
CFTR26W/GX24C	2	26	0/-18	0.21	54	1.00	10	0.99	1.7	1.85
* CFTR32W/GX24G	1	32	0/-18	0.13	36	0.98	10	0.98	1.7	2.72
CFTR42W/GX24C	1	42	0/-18	0.17	46	0.98	10	0.98	1.7	2.13

Black	0	0	Yellow/Blue		0
White	0	0	Blue/White		0
Blue	0	0	Brown		0
Red	0	0	Orange		0
Yellow	0	0	Orange/Black		0
Gray		0	Black/White		0
Violet		0	Red/White		0
				-	

Enclosure Dimensions

0	verAll (L)	Width (W)	Height (H)	Mounting (M)
	4.98 "	2.4 *	1.0 "	4.6 *
	4 49/50	2 2/5	1	4 3/5
	12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 11/20/2007

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 80018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Luminaire Type SS2– Luminaire Cutsheet

DESCRIPTION

Recessed medium beam downlight luminaire with 4 inch square aperture utilizing horizontal 26W DTT or 26/32/42W TTT compact fluorescent lamp. Modular platform can be reconfigured from below the ceiling to accept a broad range of lamp modules and optical elements. Platform is suitable for shallow plenum commercial construction. Insulation must be kept 3° from top and sides of housing. Platform + module + element combination produces square distribution with excellent light control and low aperture brightness.

SPECIFICATION FEATURES

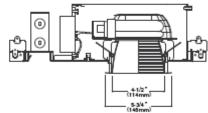
Frame

Galvanized steel plaster frame with integral bar hanger receivers. Setscrews provide positive horizontal locking.

Collar

Matte black steel collar adjusts vertically for 1/2" - 1" thick ceilings and can be rotated +/- 7.5" thru the aperture. Integral gun sights facilitate the use of guide strings or laser lines. Shipped with a paint overspray protector.

Lamp Module


Installed or removed thru the aperture or from the top and allows lamp orientation at 0°, 90°, 180° and 270° positions (except for 25W DTT and 42W TTT lamps).

Housing

Steel housing painted matte black for a visually dark interior. Removable hinged top allows for top access. All fasteners are captive.

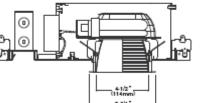
Gaskets

Closed cell gaskets achieve restrictive airflow requirements without additional caulking.

Optical Element

Mousetrap type springs pull flange tight to ceiling. Light trap eliminates spill light at edge of flange and reflector. Available in self-flanged or metal trim ring versions. May also be installed rimless using optional plastering lathing ring.

Bar Hangers


Captive preinstalled bar hangers adjusts from 8-1/2" to 24" wide; pass thru feature allows shortening without removal. Captive nail penetrates standard and engineered lumber, Mounting flange levels platform with ceiling. Integral clip attaches directly to t-bar.

Butterfly Bracket

Provides 3" of vertical adjustment and accept 1/2" EMT, C channel or bar hangers.

Primary Reflector

Miro® Erotek segmented upper reflector yields a smooth square beam with medium distribution. Accepts 26W DTT, 26/32/42W TTT compact fluorescent lamps.

Lower Reflector

Catalog #

Project

epared by

Comr

Aluminum parabolic shielding prismatoid provides for 55° cutoff and is available in a wide range of semi specular Alzak® finishes Corrugated Baffle: An optional embossed pattern that extends through the flange adding a subtle design element and reduces aperture brightness.

Junction Box

(7) 1/2" trade size pry outs, (3) integral clamps for non-metallic cable. Rated for (8) #12 thru branch circuits. Wago® type push wire connectors for field connections.

Thermal Protector

Self-resetting thermal protector protects against improper lamping and direct contact with insulation.

Ballast

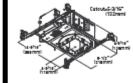
Universal input electronic ballast features multi-watt capability operating 26W DTT and 26/32/42W TTT lamps. Programmed rapid start allows use with occupancy sensors and building control systems

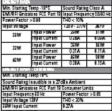
Lamp Socket

4 pin Gx24q3/4 base with rotary lock socket ensures positive lamp retention. Lamp socket locks into one of two positions accommodating different lamp lengths.

Code Compliance

Thermally protected, IP labeled and cULus listed for damp locations and ASTM-E283 AIRTITE(tm).

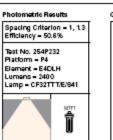

ORDERING INFORMATION: Complete enit consists of platform, lanp module and optical element. Lamp Module Ballast Option Optical Element Finish Flange Accessories Platform

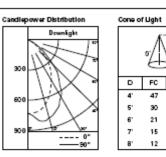

Pacet A Ling Alash + Projekas Idlash + Projekas Idlash + Projekas Pacet A Ling Alash + Projekas Idlash + Projekas Idlash + Projekas Pacet A Ling Alash + Projekas Idlash + Projekas Idlash + Projekas Pacet A Ling Alash + Projekas Idlash + Projekas Idlash + Projekas Pacet A Posture Pacet A Posture Alash + Projekas Idlash + Projekas Pacet A Posture Pacet A Posture Pacet A Posture Pacet A Posture Non-IC Chicago Pinoum Housing Pacet A Posture Pacet A Posture Pacet A Posture Diff Pacet A Posture DTI/TIT Pacet A Posture Pacet A Posture Pacet A Posture Diff Pacet A Posture DTI/TIT Pacet A Posture Pacet A Posture Pacet A Posture Diff Pacet A Posture DTI/TIT Pacet A Posture Diff Pacet A Posture DTI/TIT Pacet A Posture Pacet A Posture <td< th=""></td<>
Page TAT = 4" Attab * Project and Square Aperture Non *C Housing Attab * Project and Square Aperture Page TAT = 4" Attab * Project and Square Aperture Page TAT = 4
P408TAT = 4* Absk* Pinishes Absk* Pinishes Accessories PCRessories Square Aperture 26b2xAW TTT 840L = 4* Square Mare Nace Starts Lower Starts Lower Y408TCP = 4* 26b2xAW TTT Absk* Pinishes Mare Nace Starts Lower Starts Lower Square Aperture 26b2xAW TTT Absk* Pinishes Starts Lower Starts Lower Starts Lower Ya08TCP = 4* 2282 = 26W DTT Shidding Piamwold, Start Concertse PCRessories PCRessories Square Aperture 26b2xAW TTT Sciff Opes Open Hace Mare Nace Start Lower Start Lower Non-K Chicago DTT/TTT Concert Start Open CFH - Cocleate Hace CFH - Cocleate Hace ECCA402 - Extended depth collar for Unron TuWire Lower Shidding Piamustoid, Open Pia - Black Hace CH - Cocleate Hace ECCA402 - Extended depth collar for Compact Fluoreseret Dimming 120/ Dimming 120/ Dimming 120/ Bittels Mate White Mise Unron TuWire Side Start Start Black Mate White Mate White Mise Unron TuWire Start Start Black Mate White Mate White
Square Agenture Nos-VC Housing 42E 28W DTT E40L 4° Square Agenture Square Agenture Nos-VC Housing Ring, Matte White Square Agenture 26/32/8/2W TTT Hat ChartHase Agenture 26/32/8/2W TTT Hat ChartHase Agenture Distribution Matte White Square Agenture WHH = When Hats Matte White Straft = Standard depth collar for CH = Cashk Hate PLA464 = Rimtens adapter for solid ceiling Surface ECC44 = Rimtens adapter for solid ceiling Surface Non-VC Chicago Plenum Housing 202 = 28/W DTT Lower Slidding Primatoid, Open Open CH = Cashk Hate Straft = Cashk Hate Straft = Standard depth collar for CH = Cashk Hate DTTTTT ECC42 = Cocolate Hate Surface ECC42 = Cocolate Hate Straft = Standard depth collar for CH = Cashk Hate DTTTTT ECC4 = Cocolate Hate Surface ECC42 = Cocolate Hate Straft = Standard depth collar for CH = Cashk Hate DTTTTT ECC4 = Cocolate Hate Surface ECC42 = Cocolate Hate Surface ECC42 = Cocolate Hate Surface MM44CPL = Horizontal Compact Fluoreseret Laver Module TOTZ = 2 Straft = Standard depth collar for TOTZ = Standard depth collar for Surface ECC42 = Cocolate Hate Surface ECC42 = Cocolate Hate Surface ECC42 = Cocolate Hate Surface ECC42 = Cocolate Hate Surface
MTR4T52 = Metal trim ring, trues bronze
COOPER Lighting Specifications and Dimensions subject to change without notice.

P406TAT MH4CFL42E E4DL E4DLCB 26W DTT

26/32/42W TTT Compact Fluorescent

CÔ


Type


Date

\mathbf{V}							-		(7)	Y			ŝ	
					Ξ	Π	Π	T						
11	81	F		H.	Π	I	1	81	11	Æ	FI	п	F	1
			111			10				636				

Photometrics

	Candel	26	;
	Vertical Angle	CD	
	90	0	[
	85	2	
	75	15	
w	65	44	
4.9'	55	113	
	45	248	
6.2'	35	396	
74'	25	525	
8.7	15	650	
	5	704	
9.9'	0	711	ΙL

Candelas

fertica Angle CD

0

24

L

4.0

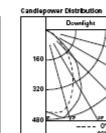
5.0'

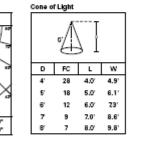
6.1

7.11

8.1

Zonal L	umens S	Summai	Y
Zone	Lumens	% Lamp	% Luminaire
0- 30	568	23.7	46.8
0-40	856	35.7	70.5
0- 60	1162	48.4	95.7
0-90	1214	50.6	100
90-180	0	0	0
0-180	1214	50.6	100


P406TAT MH4CPL E4DL E4DLCB


Coefficients of Utilization

Ceiling Wall %	70 50 30 10	70 50 30 10	50 30 10	50 30 10	50 30 10	0
RCR		Zonal cavity	y method floo	r reflectance = 2	0%	
0	60 60 60 60	59 59 59 59	56 56 56	54 54 54	52 52 52	51
1	57 55 53 52	55 54 52 51	52 51 50	50 49 48	48 47 47	46
2	53 50 47 45	52 49 47 45	47 45 44	46 44 43	44 43 42	41
3	49 45 42 40	48 45 42 39	43 41 39	42 40 38	41 39 37	37
4	46 41 38 35	45 41 37 35	40 37 35	38 36 34	37 35 34	33
5	43 38 34 31	42 37 34 31	36 33 31	35 33 31	35 32 30	- 30
6	40 35 31 28	39 34 31 28	33 30 28	33 30 28	32 30 28	27
7	38 32 28 26	37 32 28 26	31 28 26	30 27 25	30 27 25	24
8	35 30 26 24	35 29 26 23	29 26 23	28 25 23	28 25 23	22
9	33 28 24 22	33 27 24 22	27 24 21	26 23 21	26 23 21	20
10	31 26 22 20	31 25 22 20	25 22 20	25 22 20	24 22 20	19

Photometric Results

Spacing Criterion = 1, 1.2 Efficiency = 39.5% Test No. 254P229 Platform = P4 Element = E4DLH Lumens = 1900 Lamp = CF26TTT/E/830 Î

Zonal Lumens Summary									
Zone	Lunens	5 Limp	% Luminaire						
0-30	339	18.8	476						
0-40	507	28.2	71.3						
0-60	682	37.9	95.9						
0-90	711	39.5	100						
90-180	0	0	0						
0-180	711	39.5	100						

Coefficients of Utilization

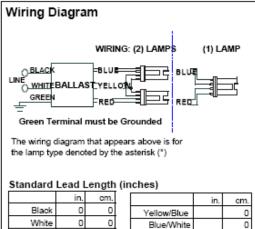
Ceiling Wall %	70 50 30 10	70 50 30 10	50 30 10	50 30 10	50 30 10	0
RCR		Zonal cavity	r method floo	r reflectance = 2	0%	
0	47 47 47 47 47	46 46 46 46	44 44 44	42 42 42	40 40 40	40
1	44 43 42 41	43 42 41 40	40 40 39	39 38 38	38 37 37	36
2	41 39 37 35	41 38 37 35	37 36 34	36 35 33	35 34 33	32
3	39 36 33 31	38 35 33 31	34 32 30	33 31 30	32 31 29	29
4	36 32 30 28	35 32 29 28	31 29 27	30 28 27	29 28 28	26
5	34 30 27 25	33 29 27 25	29 26 24	28 26 24	27 25 24	23
6	32 27 24 22	31 27 24 22	26 24 22	26 24 22	25 23 22	21
7	30 25 22 20	29 25 22 20	24 22 20	24 22 20	23 21 20	19
8	28 23 21 19	27 23 20 19	23 20 18	22 20 18	22 20 18	18
9	26 22 19 17	26 21 19 17	21 19 17	21 18 17	20 18 17	16
10	25 20 18 16	24 20 17 16	20 17 16	191716	19 17 16	15

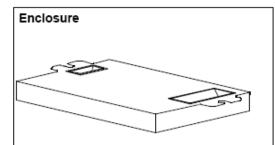
Specifications and Dimensions subject to change without notice. unineer Fint Ceeler - 1121 Highway 74 Seeler - Peechtre City, GA 30509 - TEL 778.46.4600 - FAX 778.46.4601

ADI050685 02/26/2008 5:24:01 PM

Luminaire Type SS2– Lamp Information

	TNER	Commercial Products & Solution
SI	TE SEARCH HOME	PRODUCTS FOULTION / RESOURCES Identing APPLICATIONS
		Where to Buy FAQs Contact Us Eliten
	The second se	- T/ 07/70
Products > Compact	Fluorescent > Plug-In > Triple Blaxi	<u>80 > 14</u> > 97630
97630 – F32TB) GE Ecolux® Blax® T	(/830/A/ECO '4 - Facilities; Retail Display; Hospitai	Ity; Office; Restaurant; Warehouse
High Color Rendering		Bulb Base
Energy Savings		
GENERAL CHARAC	TERISTICS	
Lamp type	Compact Fluorescent - Plug-In	
Bulb	Т4	View Larger
Base	GX24q-3	
Wattage	32	ADDITIONAL RESOURCES
Voltage	120/100	Catalogs
Rated Life	12000 hrs	Testimonials Brochures
Starting Temperature (MIN)	0 °C (32 °F)	Product Brochures • Ecolux
Cathode Resistance	2.700 Ohm	Ecolux (Environmental) Sell Sheets
Rated Life (rapid start) @ Time	12000 h @ 3 h 20000 h @ 12 h	Fast Warming Blax® T/E 32W with Amalgam
Additional info	Dimmable with appropriate dimming ballast., End of Life Protection (EOL), TCLP compliant	GRAPHS & CHARTS
Primary Application	Facilities; Retail Display; Hospitality; Office; Restaurant; Warehouse	Spectral Power Distribution
PHOTOMETRIC CH	ARACTERISTICS	2 m
initial Lumens	2200	
Mean Lumens	1850	50 M
Nominal Initial Lumens per Watt	68	
Color Temperature	3000 K	
Color Rendering Index (CRI)	82	
ELECTRICAL CHAP	ACTERISTICS	Wavelength (vm)
Current (max)	5.2500 A	
Open Circuit Voltage (after preheating) (MAX)	265 V	
Open Circuit Voltage (MIN)	515 V	-
Lamp Current	0.320 A	
Preheat Voltage (MIN)	4 V	
Current Crest Factor (MAX)	1.7	-
Supply Current	20000 Hz	


Luminaire Type SS2– Ballast Information


Electrical Specifications

ICF2S26M1	LSQS@277
Brand Name	SMARTMATE
Ballast Type	Electronic
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	120-277
Input Frequency	50/60 HZ
Status	Active

Lamp Type	Num. of	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current	Input Power	Ballast Factor	MAX THD	Power Factor	MAX Lamp Current	B.E.F.
	Lamps			(Amps)	(ANSI Watts)		%		Crest Factor	
CFQ26W/G24Q	1	26	0/-18	0.10	27	1.00	10	0.99	1.7	3.70
CFQ26W/G24Q	2	26	0/-18	0.19	51	1.00	10	0.99	1.7	1.96
CFTR26W/GX24C	1	26	0/-18	0.11	19	1.10	10	0.99	1.7	5.79
CFTR26W/GX24C	2	26	0/-18	0.21	54	1.00	10	0.99	1.7	1.85
* CFTR32W/GX24G	1	32	0/-18	0.13	36	0.98	10	0.98	1.7	2.72
CFTR42W/GX24C	1	42	0/-18	0.17	46	0.98	10	0.98	1.7	2.13

Black	0	0	Yellow/Blue		0
White	0	0	Blue/White		0
Blue	0	0	Brown		0
Red	0	0	Orange		0
Yellow	0	0	Orange/Black		0
Gray		0	Black/White		0
Violet		0	Red/White		0
				-	

Enclosure Dimensions

0	verAll (L)	Width (W)	Height (H)	Mounting (M)
	4.98 "	2.4 *	1.0 "	4.6 *
	4 49/50	2 2/5	1	4 3/5
	12.6 cm	6.1 cm	2.5 cm	11.7 cm

Revised 11/20/2007

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 80018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Luminaire Type SS3 – Luminaire Cutsheet

DESCRIPTION

673 luminous Half Cylinder features a variety of decorative options such as perforated metal, colored acrylic, trim bars and is ADA compliant.

	shaper"
Catalog #	Туре
Project	
Comments	Date
Prepared by	

SPECIFICATION FEATURES

Material

Painted or plated solid aluminum with a 1/8" matte white extruded acrylic panel.

Finish

Standard: Natural Aluminum (NA). [Sustainable Design] Premium: Polished Chrome (PC), Satin Brass (SB), Polished Brass (PB), Lacquered Satin Aluminum (SAL), Matto White (MW), Satin Copper (SCP), Polished Copper (PCP), Satin Nickel (SN), Polished Nickel (PN), Oxidized Brass (OBRS), Lacquered Satin Nickel (SNL) or Custom Color (CC).

Optics

Refer to www.shaperlighting.com for complete photometrics.

Ballast

Integral electronic HPF, multi-volt 120/277V (347V Canada), thermally protected with end-of-life circuitry to accommodate the specified lamp wattage.

Lamp/Socket

12": One (1) or two (2) 18W (2G11) 4-pin high lumen CFL lamps or one (1) 60W frosted T-10 lamp. 16": Two (2) 27W (2G11) 4-pin high lumen CFL lamps or two (2) 60W froated T-10 lamps. 25°: One (1) or two (2) 14W T5 linear fluorescent lamps. 37°: One (1) or two (2) 21W T5 linear fluorescent lamps. CFL lamps or two (2) 60W Froated T-10 lamps. CFL socket injection molded plastic. Lamps furnished by others.

Installation

Supplied with a universal circular strap for a standard 4" J-box or plaster ring.

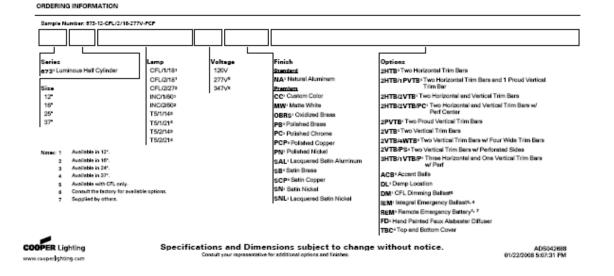
Options

Hand-Painted Faux Alabaster Acrylic Diffuser (FD), Remote Emergency Battery (12² and 18⁵ only) - Supplied by others (REM), Integrated Emergency Battery (IEM) (25⁵ and 37⁴), Dimming Ballast - Contact the factory for ballast options (DM), Top and Bottom Cover (TBC), Two Vertical Trim Bars (2VTB), Two Horizontal Trim Bars (2VTB), Two Vertical Trim Bars (2VTB), Two Vertical Trim Sides (2VTB/PS), Two Vertical Trim Sars with Four Wide Trim Bars (2VTB/4WTB), Two Vertical and Horizontal Trim Bars with Perf Center (2HTB/2VTB/PC), Two Proud Extended Vertical Trim Bars (2PVETB), Two Horizontal Trim Bars and One Proud Vertical Trim Bar (2HTB/1PVTB), MRI Applications (INC only) - Contact factory, Accent Balls (ACB), Three Horizontal and One Vertical Trim Bars with Pert (3HTB/1VTB/P), Damp Location (DL): All Painted Finishes, Lacquered Satin Nickel (SNL) finishes only. Energy Star Rating - Consult factory. MRI Applications (INC only) - Contact Factory.

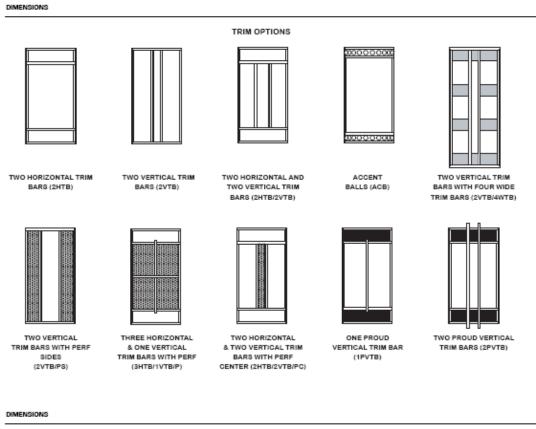
Labels

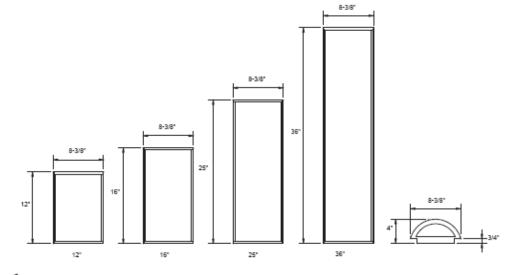
U.L. and C.U.L approved for indoor and damp location. See options for damp location finishing requirements, ADA compliant (except 2PVTB, 2PVETB, 2HTB/1PVTB).

Modifications


Shaper's skilled craftspeople with their depth of experience offer the designer the flexibility to modify standard wall luminaires for project specific solutions. Contact the factory regarding scale options, unique finishes, mounting, additional materiala/colors, or decorative detailing.

673 SERIES


Interior Wall Luminaire Luminous Haif Cylinder



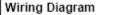
673 SERIES INTERIOR WALL LUMINAIRE

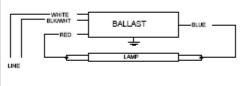
Specifications and Dimensions subject to change without notice. Shaper Lighting • 1141 Marine Way South • Richmond, CA 94894 • ph 510.234.2370 • free 510.234.2371

ADS042688 01/22/2008 5:07:31 PM

Luminaire Type SS3 – Lamp Information

	Lighting	Operation and all the design of the strength
WORLDWIDE PARTNER		Commercial Products & Solutions
SITE SEARC	H ⊩ HOME	PRODUCTS EDUCATION / RESOURCES IGHTING APPLICATIONS
		Where to Buy FAQs Contact Us EliteNe
Products > Linear Fluorescent	> Straight Linear > T5 >	31590
31590 – F14W/T5/830/E GE Ecolux® Starcoat® T5	CO	B+ PRINT
 Passes TCLP, which can low 	er disposal costs.	
🖉 High Color Rendering		_
GENERAL CHARACTERISTIC	CS .	÷i=
Lamp type	Linear Fluorescent - Straight Linear	
Bulb	T5	
Base	Miniature Bi-Pin (G5)	
Wattage	14	Bulb Base
Voltage	82	
Rated Life	30000 hrs	
Rated Life (rapid start) @ Time	30000 h @ 3 h 36000 h @ 12 h	4
Bulb Material	Soda lime	View Larger
Starting Temperature (MIN)	-20 °C (-4 °F)	-
Additional Info	TCLP compliant	ADDITIONAL RESOURCES
PHOTOMETRIC CHARACTER	USTICS	Catalogs
Initial Lumens	1350	<u>Testimonials</u> Brochures
Mean Lumens	1240	Application/Segment Brochures
Nominal Initial Lumens per Watt	96	Contractor Lighting Healthcare Lighting Product Broohures
Color Temperature	3000 K	Ecolux
Color Rendering Index (CRI)	85	Disposal Policies & Recycling Information
S/P Ratio (Scotopic/Photopic Ratio)	1.3	GRAPHS & CHARTS
	7100	Spectral Power Distribution
ELECTRICAL CHARACTERIS		240
Open Circuit Voltage (rapid start) Min @ Temperature	230 V @ 10 °C	
Cathode Resistance Ratio - Rh/Rc (MIN)	4.25	100 mm
Cathode Resistance Ratio - Rh/Rc (MAX)	6.5	2 100
Current Crest Factor (MAX)	1.7	Ballar Power (July
DIMENSIONS		
Maximum Overall Length (MOL)	22.1700 in (563.1 mm)	o 300 350 450 560 560 550 750 Warvalength (nm)
Nominal Length	21.600 in (548.6 mm)	500000 (Market)
Bulb Diameter (DIA)	0.625 in (15.8 mm)	Lamp Mortality
Bulb Diameter (DIA) (MAX)	0.670 in (17.0 mm)	
Max Base Face to Base Face (A)	21.610 in (548.8 mm)	

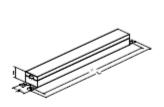

Luminaire Type SS3 – Ballast Information



Electrical Specifications

ICN-132-MC@277V										
Brand Name	CENTIUM MICRO CAN									
Ballast Type	Electronic									
Starting Method	Instant Start									
Lamp Connection	Series									
Input Voltage	120-277									
Input Frequency	50/60 HZ									
Status	Active									

Lamp Type	Num. of Lamp 8	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watta)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Creat Factor	B.E.F.
" F14T5	1	14	32/00	0.07	19	1.05	20	0.98	1.7	5.53
F17T8	1	17	0/-18	0.06	17	0.88	20	0.98	1.7	5.18
F21T5	1	21	32/00	0.09	26	1.05	15	0.98	1.7	4.04
F25T8	1	25	0/-18	0.09	23	0.88	15	0.98	1.7	3.83
F28T5	1	28	32/00	0.12	34	1.05	10	0.98	1.7	3.09
F32T8	1	32	0/-18	0.11	30	0.88	10	0.98	1.7	2.93
F32T8/ES (30W)	1	30	60/16	0.10	27	0.88	10	0.98	1.7	3.26



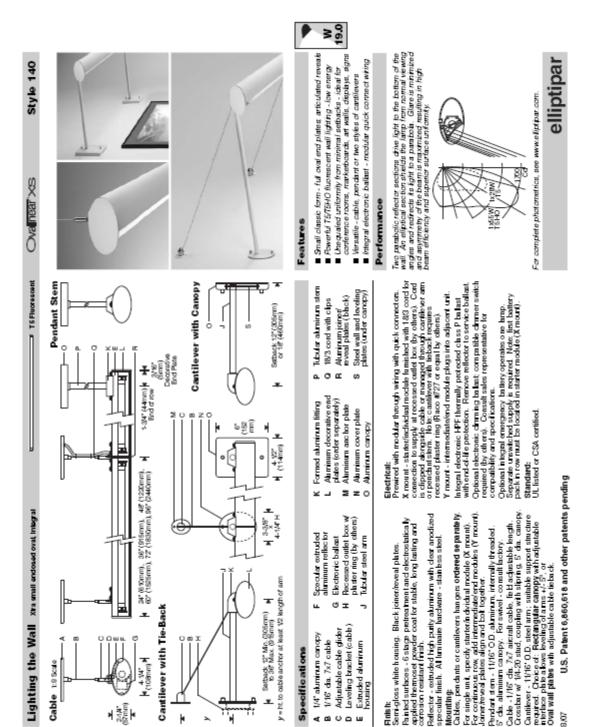
Diag. 63

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

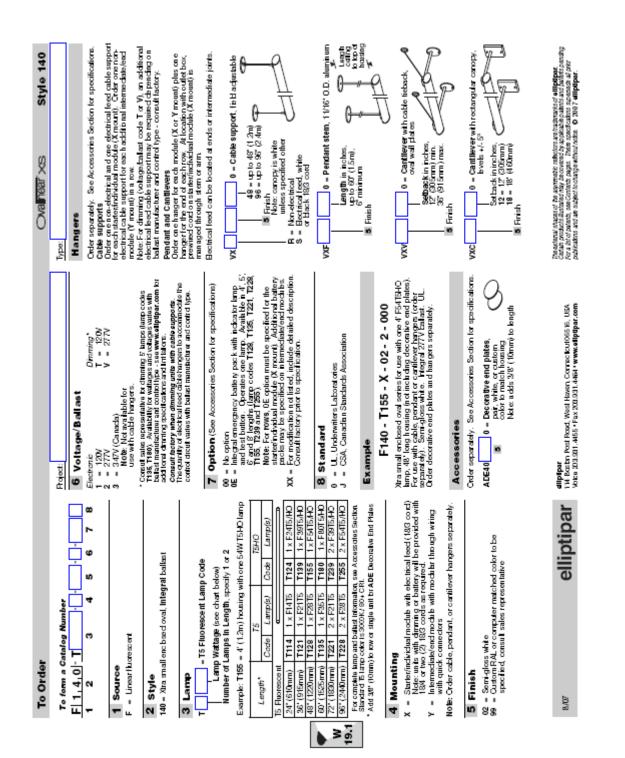
Standard Lead Length (inches)

Enclosure Dimensions

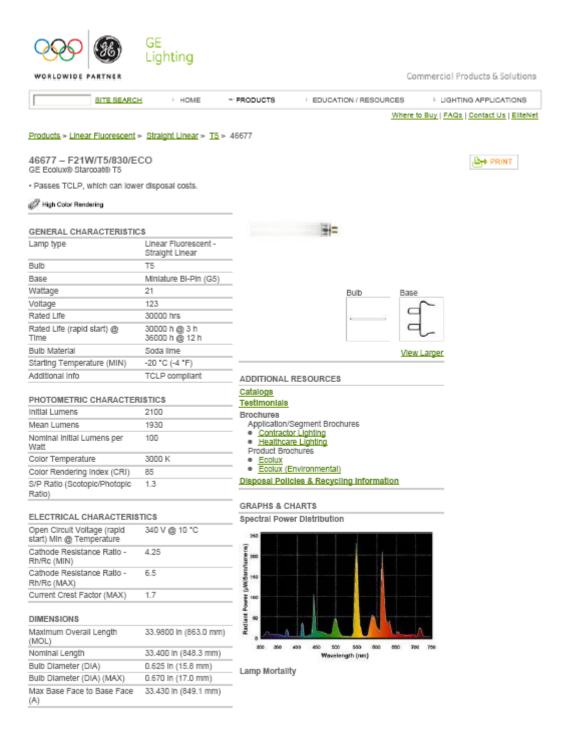
OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91 *
9 1/2	1 2/25	1 1/20	8 91/100
24.1 cm	2.7 cm	2.7 cm	22.6 cm



Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

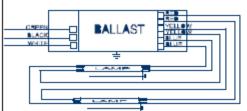

ADVANCE O'HARE INTERNATIONAL CENTER · 10275 WEST HIGGINS ROAD · ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 · Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Luminaire Type SS5– Luminaire Cutsheet



Luminaire Type SS5 – Lamp Information

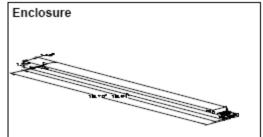
Luminaire Type SS5 – Ballast Information



Electrical Specifications

ICN-2S	ICN-2S28@277										
Brand Name	CENTIUM T5										
Ballast Type	Electronic										
Starting Method	Programmed Start										
Lamp Connection	Series										
Input Voltage	277										
Input Frequency	50/60 HZ										
Status	Active										

Lamp Type	Num. of Lamp 8	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F14T5	1	14	0/-18	0.07	19	1.07	20	0.90	1.7	5.63
F14T5	2	14	0/-18	0.13	34	1.06	10	0.98	1.7	3.12
F21T5	1	21	0/-18	0.10	26	1.03	15	0.95	1.7	3.96
* F21T5	2	21	0/-18	0.17	48	1.02	10	0.98	1.7	2.13
F28T5	1	28	0/-18	0.12	33	1.04	10	0.98	1.7	3.15
F28T5	2	28	0/-18	0.23	63	1.03	10	0.99	1.7	1.63
F35T5	1	35	0/-18	0.15	41	1.01	10	0.98	1.7	2.46
F35T5	2	35	0/-18	0.28	77	1.00	10	0.99	1.7	1.30



The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

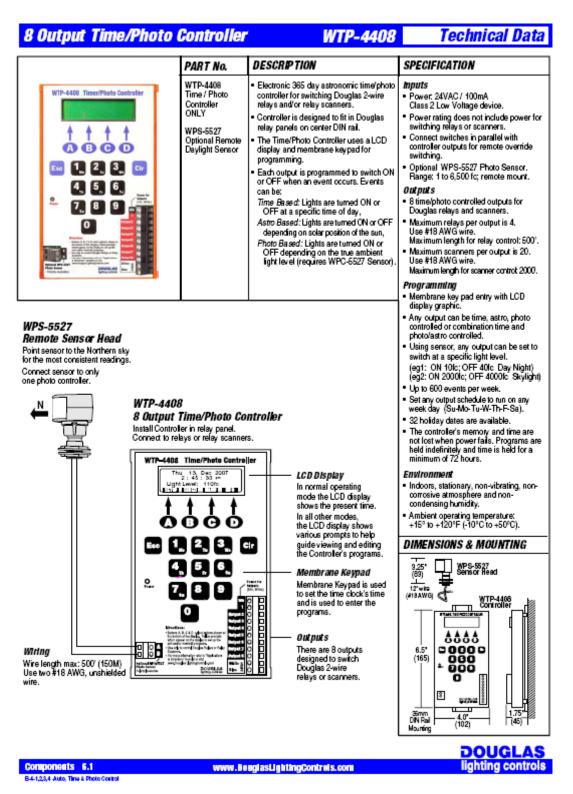
Standard Lead Length (inches)

In.	cm.		in.	cm.
0	0	Yellow/Blue	0	0
0	0	Blue/White	0	0
0	0	Brown	0	0
0	0		0	0
0	0		0	0
0	0	Black/White	0	0
0	0	Red/White	0	0
	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 Vellow/Blue Blue/White 0 0 Brown 0 0 Orange 0 0 Orange/Black 0 0 Black/White	0 0 Yellow/Blue 0 0 0 Blue/White 0 0 0 Brown 0 0 0 Orange 0 0 0 Orange/Black 0 0 0 Black/White 0

Enclosure Dimensions

[OverAll (L)	Width (W)	Height (H)	Mounting (M)
I	16.70 "	1.18 "	1.00 "	16.34 *
I	16 7/10	1 9/50	1	16 17/50
[42.4 cm	3 cm	2.5 cm	41.5 cm

Revised 09/01/2004


Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance oan vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER - 10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018 Customer Support/Technical Service: Phone: 800-372-3331 - Fax: 630-307-3071 Corporate Offices: Phone: 800-322-2086

Cutsheet for Time Clock Controller

Access to Modeling Files

P:\Thesis AGI Models

-Lab, Atrium, Atrium Daylight Study, Lecture Hall, Exterior QuickCalc

P:\Thesis Model Files

-Exterior Renderings in VIZ, all AutoCAD model files

P:\Thesis AutoCAD Files

-Lighting and Circuiting Plans for all layouts

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

Appendix B

Electrical Depth Supplemental Information

Branch Circuit and Panelboard Calculations	
Panel L4B	225
Panel L1NA	226
Panel L1SA	227
Panel L2NA	228
Panel L2SA	229
Panel L3SA	230
Panel E4B	231
Panel E4P	232
Panel DM4P	233
Panel EDM4P	234
Central vs. Distributed Transformers Study Information	
Existing Riser Diagram	235
Proposed Riser Diagram	237
Central Transformer Calculations	239
Breakdown of Electrical Take-Off - Existing	242
Breakdown of Electrical Take-Off - Proposed	245
Aluminum vs. Copper Feeders Study Calculations	248
Circuit Breaker Time-Current Trip Curves	
20A Breaker	251
60A Breaker	252
400A Breaker	253
1600A Breaker	254

Panelboard Calculations – Panel L4B (Revised)

				PANELBOARD	SIZING	WOR	KSHE	ET			
		Panel Tag		>	L4B	Pa	anel Loc	ation:		n Electrica	Room
		lominal Phase to Ne			277	<u> </u>	147		3		
Pos		lominal Phase to Pha Load Type	ase v Cat.	Location	480 Load	Units	Wires I. PF	: Watts	4 VA	Bar	narks
1	A	Fluorescent Ltg	3	RM 43-45	1625	w	0.99	1625	1641	Rei	nains
2	A	HID Lighting	4	FRONT/EAST	622.22	w	0.93	622	672		
3	В	Fluorescent Ltg	3	RM 33, 40	2005	W	0.97	2005	2076		
4	B	HID Lighting	4	POLE EAST	788.04	w	0.91	788	870		
5	C C	Fluorescent Ltg HID Lighting	3	COR 000 POLE SOUTH WEST	1492 1295	w	0.94	1492 1295	1581 1439		
7	Ă	Fluorescent Ltg	3	RM 50-55	1208	w	0.99	1206	1221		
8	Α	HID Lighting	4	POLE WEST	1480	W	0.90	1480	1644		
9	В	Fluorescent Ltg	3	STAIR WEST	314	W	0.98	314	320		
10	B C	Incandescent Ltg Fluorescent Ltg	5	GARDEN SOUTH STAIR SOUTH	750 216	W	1.00	750 216	750 220		
12	č	spare	3	STAIR SOUTH	210	w	1.00	0	0		
13	A	spare				w	1.00	0	0		
14	Α	spare				W	1.00	0	0		
15	B	spare	_			W	1.00	0	0		
16 17	BC	spare	-			w	1.00	0	0		
18	č	spare				w	1.00	Ö	0		
19	Α	space				W	1.00	0	0		
20	A	space				W	1.00	0	0		
21 22	B	space	├──			w	1.00	0	0		
23	C	space	<u>├</u>			w	1.00	ō	0		
24	č	space				w	1.00	Ő	ŏ		
25	Α	space				W	1.00	0	0		
26	A	space	_			W	1.00	0	0		
27 28	B	space	├──			w	1.00	0	0		
29	C	space	-			w	1.00	Ö	ŏ		
30	C	space				W	1.00	Ō	Ō		
31	Α	space				W	1.00	0	0		
32	A	space	<u> </u>			W	1.00	0	0		
33 34	B	space space	├──			w	1.00	0	0		
35	č	space	<u> </u>			w	1.00	Ő	Ö		
36	С	space				W	1.00	0	0		
37	A	space	└──			w	1.00	0	0		
38 39	A B	space	├──			w	1.00	0	0		
40	B	space	<u> </u>			w	1.00	ŏ	ŏ		
41	С	space				W	1.00	0	0		
42	С	space				W	1.00	0	0		
		OTAL						11.8	12.4	Amps=	15.0
PHA		OADING					kW	kVA	% Total	Amps	% +/-
		HASE TOTAL HASE TOTAL	A B			$\left \right $	4.9	5.2	42%	18.7	24.94%
			C				3.9 3.0	4.0 3.2	32% 26%	14.5 11.7	-3.10% -21.84%
			~	Connected				nanu	2.076		-1.0T/0
LOA	00-	TAGORIES	<u>├</u>	kW	kVA	DF	kW	kVA	PF		
1		receptacles		0.0	0.0	0.70	0.0	0.0			
2		computers		0.0	0.0	0.90	0.0	0.0			
3	fl	uorescent lighting		6.9	7.1	1.00	6.9	7.1	0.97		
4	in-	HID lighting andescent lighting	<u> </u>	4.2	4.6	1.00	4.2	4.6 0.8	0.90		
0 6	inc	HVAC fans	<u> </u>	0.8	0.0	0.80	0.0	0.8	1.00		
7		heating		0.0	0.0	1.25	0.0	0.0			
8	k	itchen equipment		0.0	0.0	0.80	0.0	0.0			
		Demand Loads					11.8	12.4			
Spare Capacity 25% 2.9 3.1 Total Design Loads 147 15.5 0.05 Among 19											18.7
			-			+	14.7	10.5	0.85		16./
		l Design Loads I Design Loads					14.7	15.5	0.95	Amps= Amps=	

Panelboard Calculations – Panel L1NA (Revised)

	PANELBOARD SIZING WORKSHEET													
		Panel Tag		>	L1NA	Pa	anel Loc	ation:	North	n Electrica	l Room			
		ominal Phase to Ne			277				3					
_		Iominal Phase to Pha			480	1	Wires		4					
Pos 1	Ph. A	Load Type	Cat.	Location	Load	Units	I. PF 1.00	Watts 0	VA 0	Rei	marks			
2	A	spare Fluorescent Ltg	3	RM 100A, 114,120	1124	w	0.97	1124	1164					
3	В	spare	-			w	1.00	0	0					
4	В	Fluorescent Ltg	3	R 115-19, 121-24	2578	W	0.95	2578	2711					
5	С	spare				W	1.00	0	0					
6	C	Fluorescent Ltg	3	R 100B-C,131-2	1485	W	0.97	1485	1526					
7	A	spare	3	DM 110 120	2017	W	1.00	2017	0 2058					
8	A B	Fluorescent Ltg spare	3	RM 110, 130	2017	w	1.00	2017	2058					
10	B	Fluorescent Ltg	3	RM 132A-E, 138	3079	w	0.95	3079	3248					
11	C	spare	-			w	1.00	0	0					
12	С	Fluorescent Ltg	3	R 139, 9A-E, 140, A	1512	w	0.95	1512	1595					
13	Α	spare				w	1.00	0	0					
14	Α	Fluorescent Ltg	3	STRS 1ST TO 2ND	38	w	0.98	38	39					
15	B	spare Elucroscont Ltr	-	SONG NODTH	57	W	1.00	0	0					
16	B C	Fluorescent Ltg spare	3	SCNS NORTH	57	W	0.98	57 0	58 0					
18	c	spare				w	1.00	0	0					
19	Ă	spare				w	1.00	ő	0					
20	A	spare				w	1.00	ő	ő					
21	В	space				W	1.00	Ō	Ō					
22	В	space				w	1.00	0	0					
23	С	space				w	1.00	0	0					
24	С	space				w	1.00	0	0					
25	A	space				w	1.00	0	0					
26	A	space				W	1.00	0	0					
27	B	space				W	1.00	0	0					
29	C	space				w	1.00	0	0					
30	č	space				w	1.00	ŏ	Ö					
31	Ă	space			0	w	1.00	ō	Ö					
32	Α	space			0	W	1.00	0	0					
33	В	space			0	w	1.00	0	0					
34	В	space			0	w	1.00	0	0					
35	С	space			0	w	1.00	0	0					
36	С	space			0	W	1.00	0	0					
37	A	space			0	W	1.00	0	0					
39	B	space	-		0	w	1.00	0	0					
40	B	space			ŏ	w	1.00	ŏ	Ö					
41	č	space			ŏ	w	1.00	ő	Ö					
42	С	space			0	W	1.00	0	0					
PAN	IEL T	OTAL						11.9	12.4	Amps=	14.9			
PHA	SEL	.OADING					kW	kVA	% Total	Amps	% +/-			
<u> </u>		HASE TOTAL	Α				3.2	3.3	26%	11.8	-21.11%			
		HASE TOTAL	В				5.7	6.0	49%	21.7	45.59%			
		HASE TOTAL	C				3.0	3.1	25%	11.3	-24.48%			
LOA		TAGORIES		Connected				mano						
				kW	kVA	DF	kW	kVA	PF					
1		receptacles		0.0	0.0	0.70	0.0	0.0						
2		computers		0.0	0.0	0.90	0.0	0.0						
	3 fluorescent lighting			11.9	12.4	1.00	11.9	12.4	0.96					
	4 HID lighting		 	0.0	0.0	1.00	0.0	0.0						
	5 incandescent lighting			0.0	0.0	1.00	0.0	0.0						
6	6 HVAC fans			0.0	0.0	0.80	0.0	0.0						
	7 heating 8 kitchen equipment			0.0	0.0	0.80	0.0	0.0						
P	Total	Demand Loads		0.0	0.0	0.00	11.9	12.4						
\vdash		pare Capacity		25%		+	3.0	3.1						
\vdash	Total Design Loads 14.9 15.5 0.96 Amps= 18.7													
\vdash		l Design Loads								Amps=				
—											 			

Panelboard Calculations – Panel L1SA (Revised)

Panel Tag Lis& Panel Location: South Electrical Room Nominal Phase to Perate Voltage 277 3 3 Pominal Phase to Perate Voltage 277 480 Wires: 4 1 A Floorescent Lig 3 R 107/0.62, COR 3124 wi 108 114 Peratescent Lig 3 R 107/0.62, COR 3124 wi 108 0		PANELBOARD SIZING WORKSHEET												
Number Phase Voltage-un-act 440 Wires: 4 19 A Floorescent Lg 3 R 161.70.62. COR 3124 w 0.08 3124 2201 3 B Floorescent Lg 3 R M150.62.60 2184 w 0.08 2184 2204			Panel Tag		>	L1SA	Pa	anel Loc	ation:	South	h Electrica	Room		
Pos Ph Load Type Cat. Location Load Units LPF Watts VA Remarks 1 A Fubrescent Lg 3 R 161.70.52, COR 3124 w 0.96 0 - - - - - - 0 0 0 0 - - - - - 0.0 0 - - - - - 0.0 0 0 - <td></td>														
1 A Fluorescent Lig 3 R 167.05.2.COR 3124 w 0.08 3124 2011 3 B Fluorescent Lig 3 RM 160.02.09 2184 w 0.05 2184 2204 4 B spare w 100 0 0 0 0 5 C Fluorescent Lig 3 RM 151A-J 2260 w 0.06 0 0 7 A Fluorescent Lig 3 RM 151A-J 2260 w 0.07 2860 2288 2273 0														
2 A spare											Rei	marks		
3 B Fluorescent Lig 3 RM 156, 62-69 2184 w 0.05 2184 ve 1.00 0 0 5 C Fluorescent Lig 3 R 1137,47,5,81,84 1780 w 0.00 0 0 6 C Spare w 1.00 0 0 0 0 0 7 A Fluorescent Lig 3 RM 151A-J 22569 w 0.00 0 0 8 Fluorescent Lig 3 RM 151D,E,144,43 2850 w 1.00 0 0 0 10 D Spare w 1.00 0 0 0 0 12 C Spare w 1.00 0 0 0 0 13 A Spare w 1.00 0 0 0 0 16 B Spare w 1.00 0 0 0 0 0<				3	R 161,70,52, COR	3124	+							
4 B spare N N 100 0 0 8 C Fursement Lig S R113/3/47.6.8.14 1780 w 0.02 1782 7 A Fursement Lig S R1151/L 2269 w 0.02 0 0 8 A spare N 100 0 0 0 0 9 B Fluorescent Lig S RM 151D.E.144.43 2860 w 100 0 0 0 11 C spare w 100 0 0 0 0 0 12 C spare w 100 0 0 0 0 0 13 A spare w 100 0				2	PM 158, 62, 60	2194								
5 C Fluorescent Lig 3 R 113747.58.18.4 1780 w 1.00 0 0 7 A Fluorescent Lig 3 RM 151A.J 2269 w 0.00 0 0 8 A Ssate w 1.00 0 0 0 9 B Fluorescent Lig 3 RM 151D.E.144.43 2850 w 0.07 2838 2838 10 B Spare w 1.00 0 <td></td> <td></td> <td></td> <td>3</td> <td>NW 100, 02-08</td> <td>2104</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				3	NW 100, 02-08	2104								
6 C spare w 1.00 0 0 7 A Fluorescent Lig 3 RM 151A-J 2269 2269 2288 8 A spare w 1.00 0 0 0 10 B Fluorescent Lig 3 RM 151D.E.144.43 2850 w 0.00 0 11 C spare w 1.00 0 0 0 12 C spare w 1.00 0 0 0 13 A spare w 1.00 0 0 0 15 B Fluorescent Lig 3 XTR CAFE 216 w 1.00 0 0 16 C spare w 1.00 0 0 0 0 0 17 C Fluorescent Lig 3 DISPLAY WALL 48 w 1.00 0 0 0 0 0				3	R 173.74.75.81.84	1780	+							
7 A Fluorescent Ltg 3 RM 151A-J 2269 w 0.0 0 8 A Space w 1.00 0 0 0 9 B Fluorescent Ltg 3 RM 151D.E,144.43 2850 w 0.00 0 0 11 C spare w 1.00 0 0 0 0 12 C spare w 1.00 0 0 0 0 13 A spare w 1.00 0 0 0 0 14 spare w 1.00 0 0 0 0 0 15 B Fluorescent Ltg 3 SCNS ATR NORTH 57 w 0.26 57 58 0				-			+		0	0				
9 B Fluorescent Lig 3 RM 151D,E,144,43 2850 w 0.0 0	7	Α		3	RM 151A-J	2269	w	0.96	2269	2373				
10 B spare w 1.00 0 0 11 C spare w 1.00 0 0 12 C spare w 1.00 0 0 13 A spare w 1.00 0 0 13 A spare w 1.00 0 0 14 A spare w 1.00 0 0 15 B Fluorescent Lig 3 ATR CAFE 210 w 0.00 0 16 B spare w 1.00 0 0 0 1 17 C Fluorescent Lig 3 DISPLAY WALL 48 w 0.08 48 49 20 A spare w 1.00 0 0 1 1 21 B space w 1.00 0 0 1 1 22 C space w 1.00 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1							W							
11 C spare w 1.00 0 0 0 13 A spare w 1.00 0 0 0 13 A spare w 1.00 0 0 0 14 A spare w 1.00 0 0 0 15 B Fluorescent Lig 3 ATR CAFE 216 w 0.06 0 0 16 B spare 3 SCNS ATR NORTH 57 w 0.06 0 0 0 17 C Fluorescent Lig 3 DISPLAY WALL 48 w 0.06 0 <td></td> <td></td> <td></td> <td>3</td> <td>RM 151D,E,144,43</td> <td>2850</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				3	RM 151D,E,144,43	2850								
12 C spare w 100 0 0 13 A spare w 100 0 0 0 14 A spare w 100 0 0 0 15 B Florescent Lg 3 ATR CAFE 216 w 100 0 0 16 B spare SCNS ATR NORTH 57 w 0.86 57 58 17 C Florescent Lg 3 DISPLAY WALL 48 w 0.00 0 0 18 A Florescent Lg 3 DISPLAY WALL 48 w 0.86 57 58 21 B spare w 1.00 0									_	_				
13 A spare w 100 0 0 14 A spare w 100 0 0 0 15 B Fluorescent Lg 3 ATR CAFÉ 216 w 0.08 216 220 16 B spare w 1.00 0 0 0 17 C Fluorescent Lg 3 SCNS ATR NORTH 57 w 1.00 0 0 18 C spare w 1.00 0 0 1 21 B spare w 1.00 0 0 1 22 S spare w 1.00 0 0 1 23 C spare w 1.00 0 0 1 24 C spare w 1.00 0 0 1 26 spare w 1.00 0 0 1										_				
14 A spare w 1.00 0.0 0 0 16 B Fluorescent Lig 3 ATR CAFE 216 w 0.08 216 220 17 C Fluorescent Lig 3 SCNS ATR NORTH 57 w 0.08 67 58 18 C spare 0 0 0 0 0 0 18 C spare 0 0.00 0 0 0 0 19 A Fluorescent Lig 3 DISPLAY WALL 48 w 0.08 48 49 20 A spare w 1.00 0 0 0 10 21 B space w 1.00 0 0 0 10														
15 B Fluorescent Lig 3 ATR CAFE 216 w 0.08 216 20 16 B spare														
16 B spare v 1.00 0 0 17 C Fluorescent Ltg 3 SCNS ATR NORTH 57 w 0.08 67 58 18 C spare DISPLAY WALL 48 w 0.08 48 49 20 A spare 0 w 1.00 0 0 2 21 B space w 1.00 0 0 2 22 S space w 1.00 0 0 2 23 C space w 1.00 0 0 2 24 C space w 1.00 0 0 2 24 S space w 1.00 0 0 2 2 3 space w 1.00 0 0 2 26 S space w 1.00 0 0 2 2 2 Space 0 w 1.00 0 2 3 3 Space 0<				3	ATR CAFÉ	216								
18 C spare 0 w 1.00 0 0 19 A Florescent Lig 3 DISPLAY WALL 48 w 0.88 448 49			spare				W							
19 A Fluorescent Ltg 3 DISPLAY WALL 48 w 0.98 48 49 20 A spare w 1.00 0 0 0 21 B space w 1.00 0 0 0 21 B space w 1.00 0 0 0 22 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 B space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 32 A space 0 w 1.00 0 0 </td <td></td> <td></td> <td>Fluorescent Ltg</td> <td>3</td> <td>SCNS ATR NORTH</td> <td>57</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Fluorescent Ltg	3	SCNS ATR NORTH	57								
20 A space w 1.00 0 0 21 B space w 1.00 0 0 0 21 B space w 1.00 0 0 0 23 C space w 1.00 0 0 0 23 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 space w 1.00 0 0 0 0 20 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 0 <														
21 B space w 1.00 0 0 22 B space w 1.00 0 0 23 C space w 1.00 0 0 24 C space w 1.00 0 0 24 C space w 1.00 0 0 25 A space w 1.00 0 0 26 A space w 1.00 0 0 27 B space w 1.00 0 0 1 28 B space w 1.00 0 0 1 29 C space 0 w 1.00 0 0 1 31 A space 0 w 1.00 0 0 1 32 A space 0 w 1.00 0 0 1 34 B space 0 w 1.00 0				3	DISPLAY WALL	48								
22 B space w 1.00 0 0 23 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 B space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 0 <									_	_				
23 C space w 1.00 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 0 <										_				
24 C space w 1.00 0 0 25 A space w 1.00 0 0 0 27 B space w 1.00 0 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 <														
25 A space w 1.00 0 0 26 A space w 1.00 0 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 32 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 <										_				
27 B space w 1.00 0 0 28 B space w 1.00 0 0 0 30 C space w 1.00 0 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 39 B space 0 w 1.00 0 0 41 C space 0		Α						1.00	0	0				
28 B space w 1.00 0 0 29 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 Space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 PHASE TOTAL A 5.4 5.6<			space							_				
29 C space w 1.00 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 PHASE TOTAL A 5.3 5.5<														
30 C space 0 w 1.00 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 40 B space 0 w 1.00 0 0 PANEL TOTAL 12.5 13.0 Amps= 16.7 PHASE TOTAL A 5.4 5.6 43% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>										_				
31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 PANEL TOTAL 12.5 13.0 Amps % +/- PHASE TOTAL A 5.4 5.6 <														
32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 42 C space 0 w 1.00 0 0 0 PHASE LOADING I KW kW kW KVA % Total Amps % +/- PHASE TOTAL A						0			-	-				
33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 PARELOTAL space 0 w 1.00 0 0 0 PHASE TOTAL A		_												
34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 42 C space 0 w 1.00 0 0 0 PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL B 5.3 5.5										_				
36 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 42 C space 0 w 1.00 0 0 PANEL TOTAL L 12.5 13.0 Amps= 15.7 PHASE TOTAL A 5.3 5.5 42% 19.7 25.77% PHASE TOTAL A 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9		В				0	w	1.00	0	0				
37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 42 C space 0 w 1.00 0 0 PANEL TOTAL 12.5 13.0 Amps= 15.7 PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% LOAD CATAGORIES Connected Demand 1 1 receptacles 0.0 0.0 0.0 1.00 1.00			space				w		-	-				
38 A space 0 w 1.00 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0<														
39 B space 0 w 1.00 0 0 40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 42 C space 0 w 1.00 0 0 PANEL TOTAL 0 w 1.00 0 0 0 PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL A 5.3 5.5 42% 19.7 25.77% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% CONDICATINGONIES Connecteo Demand 15% 7.0 -55.48% LOAD CATINGONIES Connoutres 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0										_				
40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0				\vdash						-				
41 C space 0 w 1.00 0 0 42 C space 0 w 1.00 0 0 0 PANEL TOTAL 12.5 13.0 Amps= 15.7 PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL A 5.3 5.5 42% 19.7 25.77% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% EORD CATAGORIES Connected DEmand 0 0 0.0 0.0 0.0 0.0 1 25.74% 1 1 receptacles 0.0 0.0 0.0 0.0 1.8 1.9 15% 7.0 -55.48% 10 ADD CATAGORIES EVENTAGORIES EVENTAGORIES DEmand 1 1 1 1 1 1 1 1 1														
42 C space 0 w 1.00 0														
PANEL TOTAL 12.5 13.0 Amps= 15.7 PHASE LOADING kW kVA % Total Amps % +/- PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% LOAD CATAGORIES connected Demand 2 5.3 5.5 42% 19.7 25.77% PLASE TOTAL C 1.8 1.9 15% 7.0 -55.48% LOAD CATAGORIES computers 0.0 0.0 0.0 0.0 0.0 2 2 computers 0.0 0.0 0.0 0.0 1.00									0					
PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES 0.0 0.0 0.70 0.0 0.0 1.0<	PAN	IEL T							12.5	13.0	Amps=	15.7		
PHASE TOTAL A 5.4 5.6 43% 20.3 29.71% PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES Connected Demand 1.8 1.9 15% 7.0 -55.48% ECAD CATAGORIES 0.0 0.0 0.70 0.0 0.0 1.0<	PHA	SEL	OADING					kW	kVA	% Total	Amos	% +/-		
PHASE TOTAL B 5.3 5.5 42% 19.7 25.77% PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% LOAD CATAGORIES Connected Demand Demand PF Phase 1 receptacles 0.0 0.0 0.70 0.0 0.0 2 2 computers 0.0 0.0 0.90 0.0 0.0 2 3 fluorescent lighting 12.5 13.0 1.00 12.5 13.0 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 2 5 incandescent lighting 0.0 0.0 1.00 0.0 1.00 0.0 1.00 6 HVAC fans 0.0 0.0 1.25 0.0 0.0 1.25 13.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	<u> </u>			A										
PHASE TOTAL C 1.8 1.9 15% 7.0 -55.48% LOAD CATAGORIES connected bernand connected bernand connected connected <thconnected< th=""> connected conne</thconnected<>														
kW kVA DF kW kVA PF 1 receptacles 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.70 0.0 0.0 0.0 3 fluorescent lighting 12.5 13.0 1.00 12.5 13.0 0.98 4 HID lighting 0.0 0.0 1.00 0.0 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 1.25 0.0 0.0 1.00 7 heating 0.0 0.0 1.25 0.0 0.0 1.25 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 1.25 7 total Demand Loads		_		-					4.0	4 5 6 4				
kW kVA DF kW kVA PF 1 receptacles 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.70 0.0 0.0 0.0 3 fluorescent lighting 12.5 13.0 1.00 12.5 13.0 0.98 4 HID lighting 0.0 0.0 1.00 0.0 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 1.25 0.0 0.0 1.00 7 heating 0.0 0.0 1.25 0.0 0.0 1.25 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 1.25 7 total Demand Loads	LUA	DUP	TAGORIES		Connecied			De	mano					
1 receptacles 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.90 0.0 0.0 0.0 3 fluorescent lighting 12.5 13.0 1.00 12.5 13.0 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads							DF			PF				
3 fluorescent lighting 12.5 13.0 1.00 12.5 13.0 0.98 4 HID lighting 0.0 0.0 1.00 0.0 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 0.0 7 bearand Loads 12.5 13.0 0.0 <td></td>														
4 HID lighting 0.0 0.0 1.00 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads														
5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.80 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 Total Demand Loads 12.5 13.0 13.3 13.3 15.7 16.3 0.96 Amps= 19.6	3	flu								0.96				
6 HVAC fans 0.0 0.0 0.80 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 0.0 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 0.0 Total Demand Loads 12.5 13.0 13.3 13.3 13.3 Total Design Loads 15.7 16.3 0.96 Amps= 19.6		in		$\left \right $										
7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 Total Demand Loads 12.5 13.0 13.1 3.3 Spare Capacity 25% 3.1 3.3 19.6							0.80							
8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 12.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 10.0<	7 heating													
Total Demand Loads 12.5 13.0 Spare Capacity 25% 3.1 3.3 Total Design Loads 15.7 16.3 0.98 Amps= 19.6														
Spare Capacity 25% 3.1 3.3 Total Design Loads 15.7 16.3 0.98 Amps= 19.6		Total	Demand Loads					12.5	13.0					
		Sp	pare Capacity		25%				3.3					
Total Design Loads Amps=								15.7	16.3	0.96		19.6		
		Tota	I Design Loads								Amps=			

Panelboard Calculations – Panel L2NA(Revised)

				PANELBOARD	· · ·	^	·	ET			
⊨		Panel Tag		>	L2NA	Pa	anel Loc	ation:	North	n Electrica	Room
		ominal Phase to Ne			277				3		
		ominal Phase to Pha			480		Wires		4		
Pos		Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	narks
1	A	spare	~	D 010 010	4000	W	1.00	0	0 1948		
2	AB	Fluorescent Ltg spare	3	R 210-212	1896	w	0.97	1896 0	1948		
4	В	Fluorescent Ltg	3	R 213-214	3498	w	0.95	3498	3686		
5	č	spare	Ť			w	1.00	0	0		
6	С	Fluorescent Ltg	3	R 204-06, 238-41	3357	W	0.95	3357	3532		
7	A	spare				W	1.00	0	0		
8	A B	Fluorescent Ltg	3	RM 200, 231-32	3023	W	0.97	3023	3126 0		
10	B	spare Fluorescent Ltg	3	ATR STR 2ND 3RD	38	w	0.98	38	39		
11	č	spare	- v	AIRCOILERDOND		w	1.00	0	0		
12	С	spare				W	1.00	0	0		
13	Α	spare				W	1.00	0	0		
14	Α	spare				W	1.00	0	0		
15	В	spare				W	1.00	0	0		
16	B C	spare				w	1.00	0	0		
18	č	spare				w	1.00	ō	0		
19	Ă	spare				w	1.00	Ö	ō		
20	Α	spare				W	1.00	0	0		
21	В	space				W	1.00	0	0		
22	В	space				W	1.00	0	0		
23	C	space				W	1.00	0	0		
24 25	C A	space				w	1.00	0	0		
26	Â	space				w	1.00	ŏ	ŏ		
27	В	space				W	1.00	Ō	ō		
28	В	space				W	1.00	0	0		
29	С	space				W	1.00	0	0		
30	C	space				W	1.00	0	0		
31 32	A	space			0	W	1.00	0	0		
33	B	space			- 0	w	1.00	Ö	ō		
34	B	space			ŏ	w	1.00	Ö	ő		
35	С	space			0	W	1.00	0	0		
36	С	space			0	W	1.00	0	0		
37	A	space			0	W	1.00	0	0		
38	A B	space			0	W	1.00	0	0		
40	B	space	-		- <u></u>	w	1.00	0	0		
41	č	space			ŏ	w	1.00	Ő	ő		
42	С	space			0	W	1.00	0	0		
PAN	IEL T	OTAL						11.8	12.3	Amps=	14.8
PHA	SEL	.OADING					kW	kVA	% Total	Amps	% +/-
		HASE TOTAL	Α				4.9	5.1	41%	18.3	23.44%
		HASE TOTAL	В				3.5	3.7	30%	13.4	-9.37%
	Ph	HASE TOTAL	С				3.4	3.5	29%	12.8	-14.07%
LUA		TAGORIES		Connected			De	manu			
				kW	kVA	DF	kW	kVA	PF		
1		receptacles		0.0	0.0	0.70	0.0	0.0			
2	P	computers		0.0 11.8	0.0	0.90	0.0	0.0	0.96		
	3 fluorescent lighting 4 HID lighting			0.0	0.0	1.00	0.0	0.0	0.80		
5				0.0	0.0	1.00	0.0	0.0			
6				0.0	0.0	0.80	0.0	0.0			
7	7 heating			0.0	0.0	1.25	0.0	0.0			
8				0.0	0.0	0.80	0.0	0.0			
		Demand Loads					11.8	12.3			
\vdash		pare Capacity	 	25%			3.0	3.1	0.00	A	10.5
\vdash		l Design Loads I Design Loads				+	14.8	15.4	0.96	Amps=	18.5
	1013	i Design Loads	I							Amps=	

Panelboard Calculations – Panel L2SA (Revised)

Panel Tag Lossib No. Notice South Electrical Room Nominal Phase to Phase Voltage 3 3 Point Dep Phase Voltage 1 4 Personal Vision 3 I A Fluorescent Lig 3 R 202, 202 AM 3096 1048 Personal Vision I A Fluorescent Lig 3 R 202, 202 AM 3096 1041 PErsonal Vision I A Spare 1 R 202, 201 2252 W 0.44 2752 2028 1 I B Spare 1 R 202, 201 2252 W 0.46 0 0 1 I C Spare 1 R 243, 244 2443 W 0.86 10 0 1	PANELBOARD SIZING WORKSHEET												
Nominal Prase to Neutral Voltage			Panel Tag		>	L2SA	Pa	anel Loc	ation:	South	h Electrica	Room	
Pes Ibi Load Losaf Load Ja Remarks 1 A Fluorescent Lig 3 R 262, 282 A-M 3060 w 0.05 3060 93		N	Nominal Phase to Ne	utral \	Voltage>	277							
1 A Fluorescent Lig 3 R 262, 222.AM 3096 w 0.055 3066 23:43 3 B Fluorescent Lig 3 R 260, 201 2752 w 0.044 2752 2028 4 B spare w 0.044 0 0 0 5 C Fluorescent Lig 3 R 282-258 3107 w 0.054 0.07 6 C spare w 0.054 0.06 0 0 7 A Fluorescent Lig 3 R 243, 245, 42, 46 3643 w 0.055 2660 0 0 10 B Fluorescent Lig 3 R 200, 280, 256 2862 w 0.08 2862 2820 100 0 0 100 0 0 101 101 101 0 0 0 0 101 101 101 101 101 0 0 0 0 101		- N	Iominal Phase to Pha	ase V	oltage>	480		Wires		4			
2 A spare	Pos	Ph.	Load Type	Cat.			Units	I. PF	Watts	VA	Rer	narks	
3 B Fluorescent Ltg 3 R 200,201 2752 w 0.44 2752 2828 5 C Fluorescent Ltg 3 R 256-258 3197 w 0.90 3107 3318 6 C Space w 0.90 0 0 7 A Fluorescent Ltg 3 R 248, 54 2690 w 0.80 0 0 8 B Fluorescent Ltg 3 R 243, 245, 42, 40 3843 39 0		Α		3	R 262, 262 A-M	3096	W		3096	3243			
4 B spare Image: spare <thimage: spare<="" th=""> <thimage: spare<="" th=""> Im</thimage:></thimage:>							W						
5 C Fluorescent Ltg 3 R.256-268 3197 w 0.96 3197 3318 7 A Fluorescent Ltg 3 R.248, 54 2899 w 0.86 0 0 8 A sparse w 0.86 0.843 3736				3	R 260, 261	2752							
6 C spare r w 0.96 0 0 1 A Fluorescent Lig 3 R.248,54 269 w 0.85 0.0 0 10 B Fluorescent Lig 3 R.243,245,42,46 3543 w 0.86 3643 3736 10 C spare N 0.08 3643 3736 11 C Fluorescent Lig 3 R.200,280,265 2862 w 1.00 0 0 12 C spare DUNN BALC 144 w 1.00 0 0 1.00 0 0 1.00 0							-						
7 A Floorescent Lig 3 R 246, 54 2690 W 0.96 0.0 8 A Spare W 0.96 0.0 0 0 9 B Fluorescent Lig 3 R 243, 246, 42, 46 3543 W 0.96 2843 37.86 10 B spare W 0.06 2862 2920 0 11 C Fluorescent Lig 3 DOWN BALC 144 W 0.96 384 39 0 12 C spare W 1.00 0 0 0 0 13 A Fluorescent Lig 3 DOWN BALC 144 W 0.08 38 39 0 16 B spare W 1.00 0 0 0 0 0 17 C spare W 1.00 0 0 0 0 0 21 spare				3	R 256-258	3197	-						
8 A soare v 0.96 0 0 v 0.96 37.8 10 B Spare 3 R.243, 246, 42, 46 3543 w 0.06 35.43 v 0.06 35.43 v 0.06 37.86 v 100 0 <td></td> <td></td> <td></td> <td>2</td> <td>D 240 54</td> <td>2800</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				2	D 240 54	2800	-						
9 B Floorescent Lig 3 R 243, 246, 42, 46 3543 w 0.0 0 0 11 C Floorescent Lig 3 R 200, 280, 255 2862 w 0.0 0 0 0 0 12 C spare w 1.00 0				3	R 248, 94	2099							
10 B spare Image: spare <th< td=""><td></td><td></td><td></td><td>2</td><td>D 242 245 42 48</td><td>2542</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				2	D 242 245 42 48	2542							
11 C Fluorescent Lig 3 R 200, 280, 286 2862 2862 2920 13 A Fluorescent Lig 3 DOWN BALC 144 w 0.0 0 13 A Fluorescent Lig 3 DOWN BALC 144 w 0.08 144 147 16 B Fluorescent Lig 3 SCNS BALC 38 w 0.00 0 17 C spare w 1.00 0 0 18 G spare w 1.00 0 0 20 A spare w 1.00 0 0 21 B space w 1.00 0 0 22 B space w 1.00 0 0 23 C space w 1.00 0 0 24 C space w <t< td=""><td></td><td></td><td></td><td></td><td>R 240, 240, 42, 40</td><td>3043</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>					R 240, 240, 42, 40	3043	-						
12 C spare w 1.00 0 0 13 A Fluorescent Lg 3 DOWN BALC 144 w 10.00 0 0 16 B Fluorescent Lg 3 SCNS BALC 38 w 0.08 38 39 16 B Spare w 1.00 0 0 0 17 C spare w 1.00 0 0 0 18 C spare w 1.00 0 0 0 19 A spare w 1.00 0 0 0 21 B spare w 1.00 0 0 0 22 B spare w 1.00 0 0 0 23 C spare w 1.00 0 0 0 24 C spare w 1.00 0 0 0 24 C spare w 1.00 0 0 0 <td></td> <td></td> <td></td> <td>2</td> <td>R 200 280 255</td> <td>2882</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				2	R 200 280 255	2882							
13 A Fluorescent Lig 3 DOWN BALC 144 w 0.08 144 147 Image: constraint of the second of th				Ľ	11 200, 200, 200	2002	-						
14 A spare w 1.00 0 0 15 B Fluorescent Lip 3 SCNS BALC 38 w 0.98 38 29 17 C spare w 1.00 0 0 - 18 C spare w 1.00 0 0 - 19 A spare w 1.00 0 0 - 21 B space w 1.00 0 0 - 22 B space w 1.00 0 0 - 22 B space w 1.00 0 0 - 23 C space w 1.00 0 0 - 24 C space w 1.00 0 0 - - 24 A space w 1.00 0 0 - - 25 A space w 1.00 0 0 - -				3	DOWN BALC	144							
15 B Fluorescent Lig 3 SCNS BALC 38 w 1.08 38 39 image: spare 16 B spare w 1.00 0 0 image: spare				Ľ	Donnenzo								
16 B spare w 100 0 0 17 C spare w 1.00 0 0 1 18 C spare w 1.00 0 0 1 19 A spare w 1.00 0 0 1 21 B space w 1.00 0 0 1 21 B space w 1.00 0 0 1 23 C space w 1.00 0 0 1 24 C space w 1.00 0 0 1 24 C space w 1.00 0 0 1 25 A space w 1.00 0 0 1 1 26 Space w 1.00 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td>3</td> <td>SCNS BALC</td> <td>38</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				3	SCNS BALC	38	-						
17 C spare w 1.00 0 0 18 C spare w 1.00 0 0 1 18 Spare w 1.00 0 0 0 1 20 A spare w 1.00 0 0 1 21 B space w 1.00 0 0 1 21 B space w 1.00 0 0 1 22 B space w 1.00 0 0 1 23 C space w 1.00 0 0 1 24 C space w 1.00 0 0 1 26 A space w 1.00 0 0 1 1 30 C space w 1.00 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td>													
19 A spare w 1.00 0 0 20 A spare w 1.00 0 0 0 21 B space w 1.00 0 0 0 21 B space w 1.00 0 0 0 22 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space 0 w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 34 space </td <td>17</td> <td>С</td> <td></td> <td></td> <td></td> <td></td> <td>W</td> <td>1.00</td> <td>0</td> <td>0</td> <td></td> <td></td>	17	С					W	1.00	0	0			
20 A spare w 1.00 0 0 21 B space w 1.00 0 0 0 23 C space w 1.00 0 0 0 23 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 Space w 1.00 0 0 0 0 29 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 34	18	С	spare				W	1.00	0	0			
21 B space w 1.00 0 0 22 B space w 1.00 0 0 23 C space w 1.00 0 0 24 C space w 1.00 0 0 24 C space w 1.00 0 0 25 A space w 1.00 0 0 26 A space w 1.00 0 0 27 B space w 1.00 0 0 1 29 C space w 1.00 0 0 1 31 A space 0 w 1.00 0 0 1 32 A space 0 w 1.00 0 0 1 33 B space 0 w 1.00 0 0 1 34 B space 0 w 1.00 0		Α	spare				W	1.00					
22 B space w 1.00 0 0 23 C space w 1.00 0 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 28 B space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 0 <									_	_			
23 C space w 1.00 0 0 24 C space w 1.00 0 0 0 25 A space w 1.00 0 0 0 26 A space w 1.00 0 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 1 31 A space 0 w 1.00 0 0 1 33 B space 0 w 1.00 0 0 1 34 B space 0 w 1.00 0 0 1 1 <										_			
24 C space w 1.00 0 0 25 A space w 1.00 0 0 0 27 B space w 1.00 0 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 37 A space 0			space				W						
25 A space w 1.00 0 0 28 A space w 1.00 0 0 0 28 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 29 C space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 <													
28 A space w 1.00 0 0 27 B space w 1.00 0 0 0 28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 39 B space 0 w 1.00 0 0 41 C space 0							-						
27 B space w 1.00 0 0 28 B space w 1.00 0 0 0 30 C space w 1.00 0 0 0 30 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 41 C space 0									_	-			
28 B space w 1.00 0 0 0 29 C space w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 32 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 38 Space 0 w 1.00 0 0 0 0 1 40 B space				$\left \right $			-			-			
29 C space w 1.00 0 0 0 30 C space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 31 A space 0 w 1.00 0 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 41 C space				$\left \right $									
30 C space 0 w 1.00 0 0 31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 39 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 PANEL TOTAL X 1.00 </td <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				$\left \right $									
31 A space 0 w 1.00 0 0 32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 38 A space 0 w 1.00 0 0 39 B space 0 w 1.00 0 0 141 C space 0 w 1.00 0 0 141 C space 0 w 1.00 0 0 141 C space 0 w 1.00				$\left \right $									
32 A space 0 w 1.00 0 0 33 B space 0 w 1.00 0 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 38 C space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 42 Space 0 w 1.00 0 0 0 0 0 PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% 0 PHASE TOTAL B <t< td=""><td></td><td></td><td></td><td>$\left \right$</td><td></td><td>0</td><td></td><td></td><td>_</td><td>-</td><td></td><td></td></t<>				$\left \right $		0			_	-			
33 B space 0 w 1.00 0 0 34 B space 0 w 1.00 0 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 0 41 C space 0 w 1.00 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td>$\left \right$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				$\left \right $									
34 B space 0 w 1.00 0 0 35 C space 0 w 1.00 0 0 0 36 C space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 PANEL TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.1 6.2													
35 C space 0 w 1.00 0 0 36 C space 0 w 1.00 0 0 0 37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 PANEL TOTAL 1.00 0 0 0 0 0 0 0 PHASE TOTAL A 5.9 6.2 32% 22.5 -2.33% LOAD CREAGORIES Connected D										-			
38 C space 0 w 1.00 0 0 37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 42 C space 0 w 1.00 0 0 0 PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.1 6.2 33% 22.5 -2.33% EOAD CATAGORIES Computers 0.0 0.0 0.0<													
37 A space 0 w 1.00 0 0 0 38 A space 0 w 1.00 0 0 0 39 B space 0 w 1.00 0 0 0 40 B space 0 w 1.00 0 0 0 41 C space 0 w 1.00 0 0 0 42 C space 0 w 1.00 0 0 0 PANEL TOTAL 0 w 1.00 0 0 0 PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.1 6.2 33% 22.5 -2.33% EORD CATAGORIES Connected Demand 0 0 0 1 receptacles 0.0 0.0 0.0 0.0 0.0 1 2 computers 0.0 0.0 0.0 0.0 0.0	36	С				0	W	1.00	0	0			
39 B space 0 w 1.00 0 0 40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0 0 42 C space 0 w 1.00 0 0 PANEL TOTAL 0 w 1.00 0 0 0 PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL A 6.1 6.2 33% 22.5 -2.81% PHASE TOTAL B 6.1 6.2 33% 22.5 -2.33% COMD CATAGORIES Commediat 0.1 6.1 6.2 33% 22.5 -2.33% COMD CATAGORIES Commediat 0.0 0.0 0.0 0.0 0.0 1 receptacles 0.0 0.0 0.0 0.0 0.0 0.0 3 fluoresce	37	Α				0	w	1.00	0	0			
40 B space 0 w 1.00 0 0 41 C space 0 w 1.00 0	38	Α	space			0	w	1.00	0	0			
41 C space 0 w 1.00 0 0 0 42 C space 0 w 1.00 0			space				W						
42 C space 0 w 1.00 0							-						
PANEL TOTAL 18.3 19.2 Amps= 23.1 PHASE LOADING kW kVA % Total Amps % +/- PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.3 6.7 35% 24.2 4.94% PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% LOAD CRIACORIES Connected DEmand 22.5 -2.33% 22.5 -2.33% LOAD CRIACORIES Connected DEmand 0.0 0.0 0.0 1.6 2.33% 22.5 -2.33% <td></td>													
PHASE LOADING kW kVA % Total Amps % +/- PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.3 6.7 35% 24.2 4.94% PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% ECAD CATAGORIES Connected Demand 22.5 -2.33% 22.5 -2.33% ECAD CATAGORIES Connected Demand Demand 22.5 -2.33% ECAD CATAGORIES 0.0 0.0 0.0 0.0 0.0 1.2 1 receptacles 0.0 0.0 0.0 0.0 1.2 3 filuerescent						0	W	1.00					
PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.3 6.7 35% 24.2 4.94% PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commetice 0.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commetice Demaind 0.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commeters 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.70 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 1.00 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	PAN	IEL T	OTAL						18.3	19.2	Amps=	23.1	
PHASE TOTAL A 5.9 6.2 32% 22.5 -2.61% PHASE TOTAL B 6.3 6.7 35% 24.2 4.94% PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commetice 0.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commetice Demaind 0.1 6.2 33% 22.5 -2.33% EDAD CATAGORIES Commeters 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.70 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 1.00 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	PHA	SE L	OADING					kW	kVA	% Total	Amos	% +/-	
PHASE TOTAL B 6.3 6.7 35% 24.2 4.94% PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% ECAD CATAGORIES Connected Demand RV kVA DF kW kVA PF 1 receptacles 0.0 0.0 0.70 0.0 0.0 2 2 computers 0.0 0.0 0.90 0.0 0.0 2 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 1.00 5 incandescent lighting 0.0 0.0 1.00 0.0 1.00				A									
PHASE TOTAL C 6.1 6.2 33% 22.5 -2.33% COAD CATAGORIES Commediae Demand Demand 0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Connected Demand kW kVA DF kW kVA PF 1 receptacles 0.0 0.0 0.0 0.0 0.0 2 computers 0.0 0.0 0.0 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 1.00 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 1.00 7 heating 0.0 0.0 1.25 0.0 0.0 1.00 8 kitchen equipment 0.0 0.0 0.0 0.0 1.00 18.3 19.2 Spare Capacity 25% 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8		_		-									
kW kVA DF kW kVA PF 1 receptacles 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.0 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HDD lighting 0.0 0.0 1.00 0.0 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 0.0 6 HVAC fans 0.0 0.0 1.25 0.0 0.0 0.0 7 heating 0.0 0.0 0.80 0.0 0.0 0.0 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 0.0 Total Demand Loads	11.00												
1 receptacles 0.0 0.0 0.70 0.0 0.0 0.0 2 computers 0.0 0.0 0.90 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 0.0 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads		2 01		\vdash			DF			PF			
2 computers 0.0 0.0 0.0 0.0 0.0 0.0 3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 10.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 1.00 6 HVAC fans 0.0 0.0 1.25 0.0 0.0 1.00 7 heating 0.0 0.0 1.25 0.0 0.0 1.00 8 kitchen equipment 0.00 0.0 0.0 0.0 1.00	1		receptacles										
3 fluorescent lighting 18.3 19.2 1.00 18.3 19.2 0.96 4 HID lighting 0.0 0.0 1.00 0.0 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 0.0 7 Total Demand Loads 18.3 19.2 18.3 19.2 18.3 19.2 8 Kitchen equipment 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 Spare Capacity 25% 4.8 4.8 4.8 4.8 Total Design Loads 22.9 24.0 0.96 Amps= 28.8				\vdash									
4 HID lighting 0.0 0.0 1.00 0.0 0.0 5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.0 0.0 0.0 7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 25% 4.6 4.8 Total Design Loads 22.9 24.0 0.96 Amps= 28.8	3	3 fluorescent lighting			18.3					0.96			
5 incandescent lighting 0.0 0.0 1.00 0.0 0.0 6 HVAC fans 0.0 0.0 0.80 0.0 0.0 7 7 heating 0.0 0.0 1.25 0.0 0.0 7 8 kitchen equipment 0.0 0.0 0.80 0.0 0.0 7 Total Demand Loads 7 18.3 19.2 19.2 19.2 19.2 Spare Capacity 25% 4.6 4.8 22.9 24.0 0.96 Amps= 28.8	4	4 HID lighting			0.0								
7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 18.3 19.2 18.3 19.2 19.2 Spare Capacity 25% 4.6 4.8 22.9 24.0 0.96 Amps= 28.8		inc	andescent lighting				1.00						
7 heating 0.0 0.0 1.25 0.0 0.0 8 kitchen equipment 0.0 0.0 0.0 0.0 0.0 Total Demand Loads 18.3 19.2 18.3 19.2 19.2 Spare Capacity 25% 4.6 4.8 22.9 24.0 0.96 Amps= 28.8	6		HVAC fans										
Total Demand Loads 18.3 19.2 Spare Capacity 25% 4.6 4.8 Total Design Loads 22.9 24.0 0.96 Amps= 28.8			heating				1.25						
Spare Capacity 25% 4.6 4.8 Total Design Loads 22.9 24.0 0.96 Amps= 28.8	8	k	itchen equipment		0.0	0.0	0.80						
Total Design Loads 22.9 24.0 0.96 Amps= 28.8		Total	Demand Loads										
					25%								
Total Design Loads Amps=								22.9	24.0	0.96		28.8	
		Tota	al Design Loads								Amps=		

Panelboard Calculations – Panel L3SA (Revised)

PANELBOARD SIZING WORKSHEET												
		Panel Tag		>	L3SA	Pa	anel Loc	ation:	South	h Electrica	l Room	
		ominal Phase to Ne			277				3			
_		Iominal Phase to Ph			480	1	Wires		4			
	Ph.	Load Type	Cat.	Location R 374,75,76	Load 3083	Units	I. PF 0.95	Watts 3083	VA 3250	Rei	marks	
1	A	Fluorescent Ltg Fluorescent Ltg	3	R 355G	880	w	0.90	880	978			
3	В	Fluorescent Ltg	3	R 361,62,63	3583	w	0.96	3583	3720			
4	В	Fluorescent Ltg	3	R 355F	660	W	0.90	660	733			
5	C	Fluorescent Ltg	3	R 373, CORR F-H	2039	W	0.98	2039	2089 978			
6	C A	Fluorescent Ltg Fluorescent Ltg	3	R 355E R 346,7,54	880 2918	w	0.90	880 2918	3064			
8	A	Fluorescent Ltg	3	R 355C	880	w	0.90	880	978			
9	В	Fluorescent Ltg	3	R 343,44,45,45A	4191	W	0.95	4191	4429			
10	B	Fluorescent Ltg	3	R 355B	880	W	0.90	880	978			
11 12	C C	spare Fluorescent Ltg	3	R 355A	0 1760	w	1.00	0 1760	0 1956			
13	Ă	HVAC Fans	6	HT TRACE CT	1040	w	0.95	1040	1095			
14	A	Fluorescent Ltg	3	ATR DWN NOR	504	w	0.98	504	514			
15	В	HVAC Fans	6	HT TRACE CT	1040	W	0.95	1040	1095			
16	B	Fluorescent Ltg	3	SCNS BALC	38	W	0.98	38 0	39 0			
17	c	spare Fluorescent Ltg	3	DÉCOR PEND	184	w	0.98	184	188			
19	Ă	spare		DEGOINTEND	104	w	1.00	0	0			
20	Α	spare				W	1.00	0	0			
21	B	space				W	1.00	0	0			
22 23	B C	space				w	1.00	0	0			
23	č	space				w	1.00	ő	0			
25	A	space				W	1.00	Ō	ō			
26	Α	space				W	1.00	0	0			
27	B	space				W	1.00	0	0			
28 29	B	space space	\vdash			w	1.00	0	0			
30	č	space				w	1.00	ŏ	ŏ			
31	Α	space			0	W	1.00	0	0			
32	Α	space			0	W	1.00	0	0			
33	B	space			0	W	1.00	0	0			
34	C	space space	+		0	w	1.00	0	0			
36	č	space			ŏ	w	1.00	ō	õ			
37	Α	space			0	W	1.00	0	0			
38	A	space			0	W	1.00	0	0			
39	B	space			0	w	1.00	0	0			
41	č	space	\vdash		ŏ	w	1.00	ŏ	ŏ			
42	С	space			0	W	1.00	0	0			
PAN	IEL T	OTAL						24.6	26.1	Amps=	31.4	
PHA		.OADING					kW	kVA	% Total	Amps	% +/-	
		HASE TOTAL	Α				9.3	9.9	38%	35.7	13.62%	
	_	HASE TOTAL	B				10.4	11.0	42%	39.7	26.45%	
<u> </u>		HASE TOTAL	С				4.9	5.2	20%	18.8	-40.07%	
LOP		ATAGORIES		kW		DF	kW	hano kVA	PF			
1		receptacles	+	600 0.0	kVA 0.0	0.70	0.0	0.0	P'F			
2	2 computers			0.0	0.0	0.90	0.0	0.0				
3	fl	uorescent lighting		22.5	23.9	1.00	22.5	23.9	0.94			
4		HID lighting		0.0	0.0	1.00	0.0	0.0				
5	inc	andescent lighting HVAC fans	+	0.0	0.0	1.00	0.0	0.0	0.95			
7		HVAC fans heating	+	2.1	0.0	1.25	1.7	1.8	0.80			
8	k	itchen equipment		0.0	0.0	0.80	0.0	0.0				
	Total	Demand Loads					24.1	25.6				
		pare Capacity		25%			6.0	6.4				
<u> </u>		l Design Loads	$\left \right $			$\left \right $	30.2	32.1	0.94	Amps=	38.6	
	i ota	l Design Loads								Amps=		

Panelboard Calculations – Panel E4B (Revised)

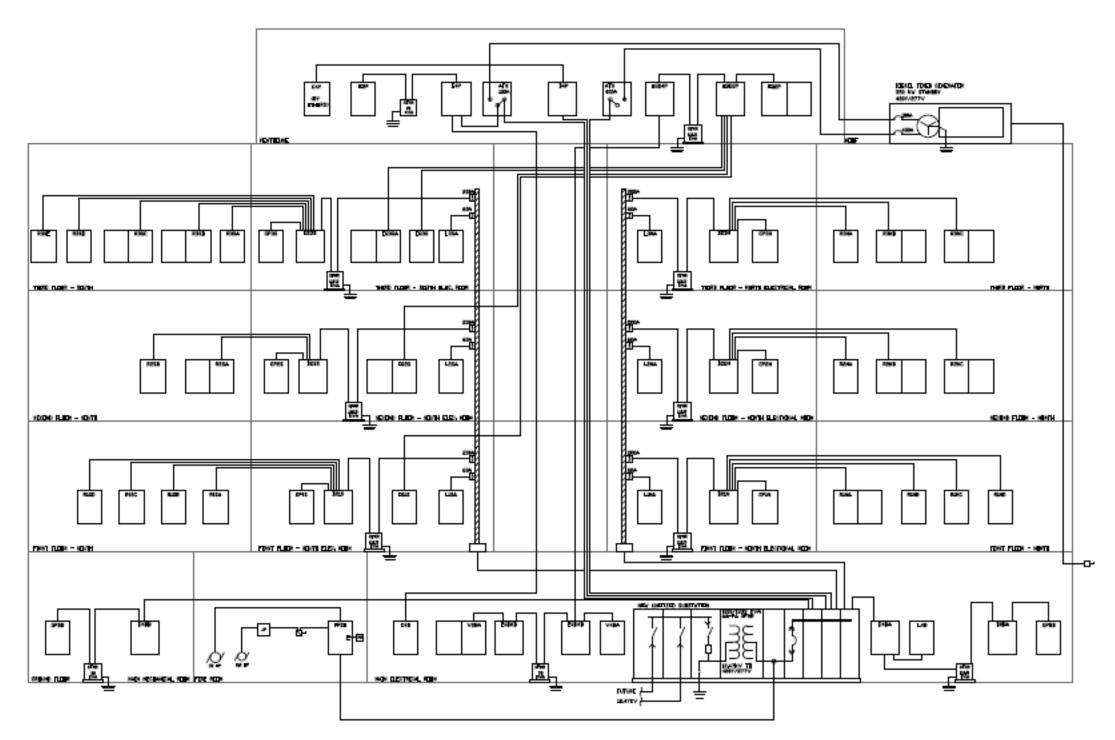
	PANELBOARD SIZING WORKSHEET												
		Panel Tag		>	E4B	P	anel Loca	ation:	North	n Electrica	Room		
		ominal Phase to Ne			277				3				
		lominal Phase to Ph			480		Wires		4				
Pos		Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Re	narks		
1	A	Fluorescent Ltg	3	VIVR EMERG	593 129	W	0.99	593	599 129				
2	A B	HID Lighting Fluorescent Ltg	3	REAR EXTERIOR MECH/ELEC NORTH	1365	w	1.00	129 1365	1379				
4	В	Fluorescent Ltg	3	2ND FL N EMERG	1621	w	0.96	1621	1681				
5	č	Fluorescent Ltg	3	2ND FL S EMERG	1267	w	0.96	1267	1321				
6	С	HID Lighting	4	EAST ENT EMERG	198	W	0.92	198	216				
7	A	Fluorescent Ltg	3	ELEV ROOM	130	W	0.99	130	131				
8	A	HID Lighting	4	WEST EMERG	556	W	0.91	556 0	614 0				
9	B	spare HID Lighting	4	GARDEN EMERG	703	w	0.90	703	781				
11	č	Fluorescent Ltg	3	N STAIR EMERG	1937.22	w	0.98	1937	1977				
12	С	spare				W	1.00	0	0				
13	Α	Fluorescent Ltg	3	S STAIR EMERG	1900.22	W	0.98	1900	1939				
14	A	space	<u> </u>			W	1.00	0	0				
15 16	B	Fluorescent Ltg Fluorescent Ltg	3	1ST FL N EMERG VESTIBULE LTG	1238 184	w	0.96	1238 184	1295 188				
17	C	Fluorescent Ltg	3	1ST FL S EMERG	1515	w	0.96	1515	1575				
18	č	Fluorescent Ltg	3	BASEMENT EMERG	1175	w	0.96	1175	1226				
19	Α	space				W	1.00	0	0				
20	Α	space				W	1.00	0	0				
21	В	space				W	1.00	0	0				
22	B C	space	<u> </u>			W	1.00	0	0				
24	c	space	-			w	1.00	0	0				
25	Ă	space	-			w	1.00	ő	ŏ				
26	Α	space				W	1.00	0	0				
27	В	space				W	1.00	0	0				
28	В	space				W	1.00	0	0				
29	C	space	<u> </u>			W	1.00	0	0				
30 31	C A	space	-			w	1.00	0	0				
32	A	space	-			w	1.00	0 0	ő				
33	В	space				w	1.00	ŏ	Ő				
34	В	space				W	1.00	0	0				
35	С	space				W	1.00	0	0				
36	C	space	<u> </u>			W	1.00	0	0				
37	A	space	<u> </u>			w	1.00	0	0				
39	B	space	-			W	1.00	0	ő				
40	В	space	<u> </u>			w	1.00	Ő	Ő				
41	С	space				W	1.00	0	0				
42	С	space				W	1.00	0	0				
PAN	IEL T	OTAL						14.5	15.0	Amps=	18.1		
PHA		.OADING					kW	kVA	% Total	Amps	% +/-		
		HASE TOTAL	Α				3.3	3.4	23%	12.3	-31.98%		
	51	HASE TOTAL	B				5.1	5.3	35%	19.2	6.12%		
⊢	Ph	HASE TOTAL	С				6.1	6.3	42%	22.8	25.86%		
LOA	DUP	ATAGORIES	-	Connected				nanu					
-		montroler		kW 0.0	kVA 0.0	DF 0.70	kW 0.0	kVA 0.0	PF				
2	1 receptacles 2 computers			0.0	0.0	0.90	0.0	0.0					
3	2 computers 3 fluorescent lighting			12.9	13.3	1.00	12.9	13.3	0.97				
4	4 HID lighting			1.6	1.7	1.00	1.6	1.7	0.91				
5				0.0	0.0	1.00	0.0	0.0					
6				0.0	0.0	0.80	0.0	0.0					
7	7 heating 8 kitchen equipment			0.0	0.0	1.25	0.0	0.0					
8	Total Demand Loads			0.0	0.0	0.80	14.5	15.0					
\vdash		pare Capacity	<u> </u>	25%		+	3.6	3.8					
\vdash		l Design Loads	1				18.1	18.8	0.96	Amps=	22.6		
		l Design Loads								Amps=			
_			-										

Panelboard Calculations – Panel E4P (Revised)

PANELBOARD SIZING WORKSHEET												
		Panel Tag		>	E4P	Pa	anel Loc	ation:	E	ectrical R	oom	
		ominal Phase to Ne			277				3			
		ominal Phase to Pha			480		Wires		4			
	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Rer	marks	
2	A	spare Fluorescent Ltg	3	EM 3RD FL COL N	1318	w	1.00	0 1318	0 1372			
3	B	spare	3	EM SKD FE OOE N	1310	W	1.00	0	0			
4	В	Fluorescent Ltg	3	EM 3RD FL COL S	1399	w	0.98	1399	1458			
5	С	Fluorescent Ltg	3	EM ATR DWN	720	W	0.98	720	735			
6	С	spare				w	1.00	0	0			
7	A	Fluorescent Ltg	3	RM 401	325	w	0.98	325	332			
8	A	spare				W	0.98	0	0			
9 10	B	spare				w	1.00	0	0			
11	C	spare				W	1.00	ŏ	Ö			
12	č	spare				w	1.00	Ö	Ö			
13	Α	spare				w	1.00	0	0			
14	Α	spare				W	1.00	0	0			
15	В	spare				W	1.00	0	0			
16 17	B	spare				W	1.00	0	0			
18	c	spare	-			w	1.00	0	0			
19	A	spare	1			w	1.00	ŏ	0			
20	A	spare				w	1.00	Ő	ő			
21	В	space				W	1.00	0	0			
22	В	space				w	1.00	0	0			
23	C	space				w	1.00	0	0			
24 25	C	space	<u> </u>			w	1.00	0	0			
25	A	space				w	1.00	0	0			
27	B	space	-			W	1.00	ŏ	ő			
28	В	space				w	1.00	Ö	0			
29	С	space				w	1.00	0	0			
30	С	space				W	1.00	0	0			
31	Α	space			0	w	1.00	0	0			
32	A	space	<u> </u>		0	w	1.00	0	0			
33	B	space			0	w	1.00	0	0			
35	C	space	-		0	w	1.00	0	0			
36	č	space			ŏ	w	1.00	Ö	Ő			
37	Α	space			0	w	1.00	0	0			
38	Α	space			0	w	1.00	0	0			
39	В	space			0	W	1.00	0	0			
40	B	space			0	W	1.00	0	0			
41 42	C	space			0	w	1.00	0	0			
		space OTAL	I		U	**	1.00	3.8	3.9	Amps=	4.7	
PHA		OADING				+	kW	kVA	% Total	Amps	% +/-	
⊢		HASE TOTAL HASE TOTAL	A B			+	1.6 1.4	1.7 1.5	44% 37%	6.1 5.3	31.16% 12.27%	
\vdash		HASE TOTAL	C			+	0.7	0.7	19%	2.7	-43.43%	
				Connected					1.5.16		10.10.10	
LOA	00	ADOMES		kW	kVA	DF	kW	kVA	PF			
1		receptacles	1	0.0	0.0	0.70	0.0	0.0				
2	2 computers			0.0	0.0	0.90	0.0	0.0				
3	3 fluorescent lighting			3.8	3.9	1.00	3.8	3.9	0.97			
4		HID lighting		0.0	0.0	1.00	0.0	0.0				
5	inc	andescent lighting		0.0	0.0	1.00	0.0	0.0				
6 7		HVAC fans heating	 	0.0	0.0	0.80	0.0	0.0				
8	k	itchen equipment	<u> </u>	0.0	0.0	1.25	0.0	0.0				
	Total	Demand Loads	<u> </u>	0.0	0.0	0.00	3.8	3.9				
		pare Capacity	<u> </u>	25%		+	0.9	1.0				
	Tota	l Design Loads					4.7	4.9	0.97	Amps=	5.9	
		l Design Loads								Amps=		
_												

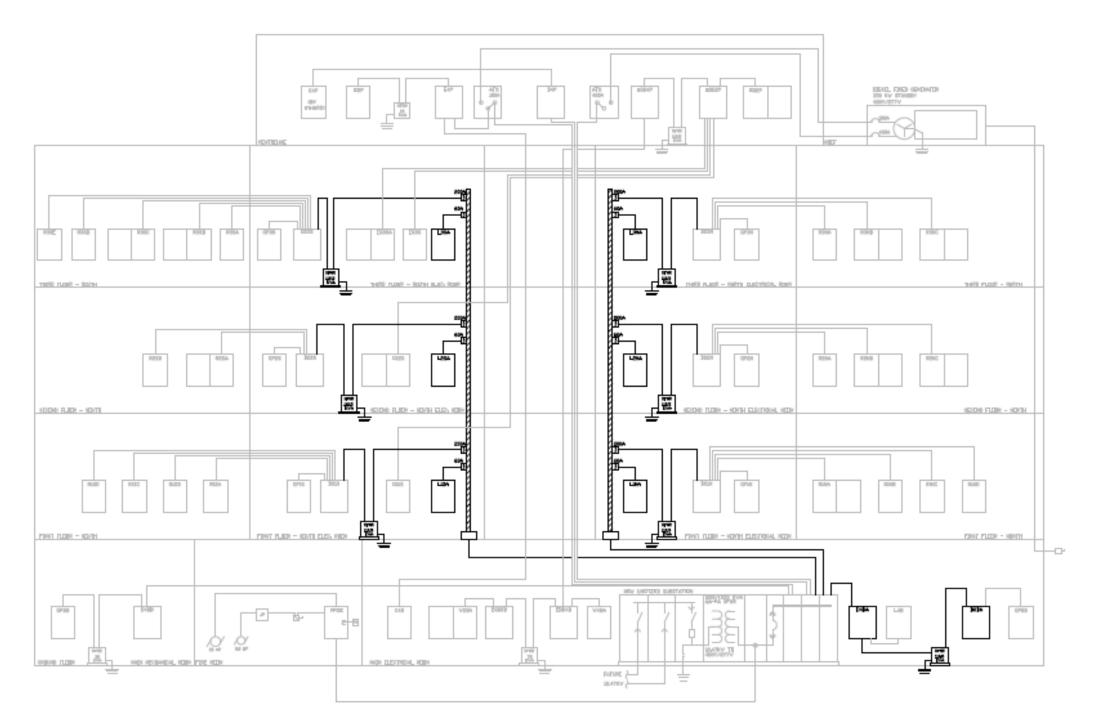
Panelboard Calculations – Panel DM4P (Revised)

PANELBOARD SIZING WORKSHEET												
⊨		Panel Tag		>	DM4P	Pa	anel Loc	ation:	North	n Electrica	I Room	
		ominal Phase to Ne			277		147		3			
Pos		lominal Phase to Ph Load Type	ase V Cat.	Location	480	Units	Wires I. PF	: Watts	4 VA	Rev.	marks	
1	Ph.	Fluorescent Ltg	3	LEC CHALK	Load 470	w	0.99	470	475	Rei	narks	
2	A	Fluorescent Ltg	3	LEC SPEAKER	188	w	0.99	188	190			
3	В	Fluorescent Ltg	3	LEC CEN FRONT	174	W	0.98	174	178			
4	B	Fluorescent Ltg	3	LEC LEFT FRON	116	W	0.98	116	118 178			
6	c	Fluorescent Ltg Fluorescent Ltg	3	LEC RIGHT FRON LEC SCONCES	152	w	0.98	1/4	155			
7	Ā	spare	-		0	W	1.00	0	0			
8	Α	Fluorescent Ltg	3	ATR DOWN COR	1517	w	0.98	1517	1548			
9	B	Fluorescent Ltg	3	ATR WALL COR	1110	W	0.98	1110	1133			
10	BC	Fluorescent Ltg Fluorescent Ltg	3	HUM WALL HUM ACCENT	750	w	1.00	750 150	750 150			
12	č	Fluorescent Ltg	3	HUM ACCENT	150	w	1.00	150	150			
13	Α	spare				w	1.00	0	0			
14	A	spare				w	1.00	0	0			
15 16	B	spare	$\left \right $			w	1.00	0	0			
17	C	spare	+			w	1.00	Ö	0			
18	č	spare				w	1.00	Ő	0			
19	Α	spare				W	1.00	0	0			
20	A	spare				W	1.00	0	0			
21	B	space	+			w	1.00	0	0			
23	C	space				w	1.00	0	0			
24	С	space				W	1.00	0	0			
25	A	space				W	1.00	0	0			
26 27	A B	space	$\left \right $			w	1.00	0	0			
28	B	space	+			w	1.00	0	0			
29	C	space				w	1.00	ő	Ő			
30	С	space				W	1.00	0	0			
31	A	space			0	W	1.00	0	0			
32	A B	space	$\left \right $		0	w	1.00	0	0			
34	В	space	+		ŏ	w	1.00	Ő	Ö			
35	С	space			0	W	1.00	0	0			
36	C	space			0	W	1.00	0	0			
37	A	space	$\left \right $		0	w	1.00	0	0			
39	B	space	$\left \right $		ő	w	1.00	ŏ	Ö			
40	В	space			0	W	1.00	0	0			
41	С	space			0	W	1.00	0	0			
42 PAN	C	otal			0	w	1.00	0 5.0	0 5.0	Amps=	6.0	
PHA		OADING				+	kW 2.2	kVA 2.2	% Total	Amps	% +/-	
\vdash		HASE TOTAL HASE TOTAL	A B			+	2.2	2.2	44% 43%	8.0 7.9	32.13% 30.09%	
\vdash		HASE TOTAL	č			+	0.6	0.6	13%	2.3	-62.22%	
LUA		ANGORIES		Connected	1			nano				
				kW	kVA	DF	kW	kVA	PF			
1		receptacles		0.0	0.0	0.70	0.0	0.0				
2	.	computers uorescent lighting	$\left \right $	0.0 5.0	0.0 5.0	0.90	0.0 5.0	0.0 5.0	0.99			
4	- 11	HID lighting	+	0.0	0.0	1.00	0.0	0.0	0.88			
5	inc	andescent lighting		0.0	0.0	1.00	0.0	0.0				
6		HVAC fans		0.0	0.0	0.80	0.0	0.0				
7		heating		0.0	0.0	1.25	0.0	0.0				
8	Total	itchen equipment Demand Loads	+	0.0	0.0	0.80	0.0 5.0	0.0 5.0				
\vdash	St	pare Capacity	+	25%		+	1.2	1.3				
	Tota	l Design Loads					6.2	6.3	0.99	Amps=	7.6	
	Tota	al Design Loads								Amps=		

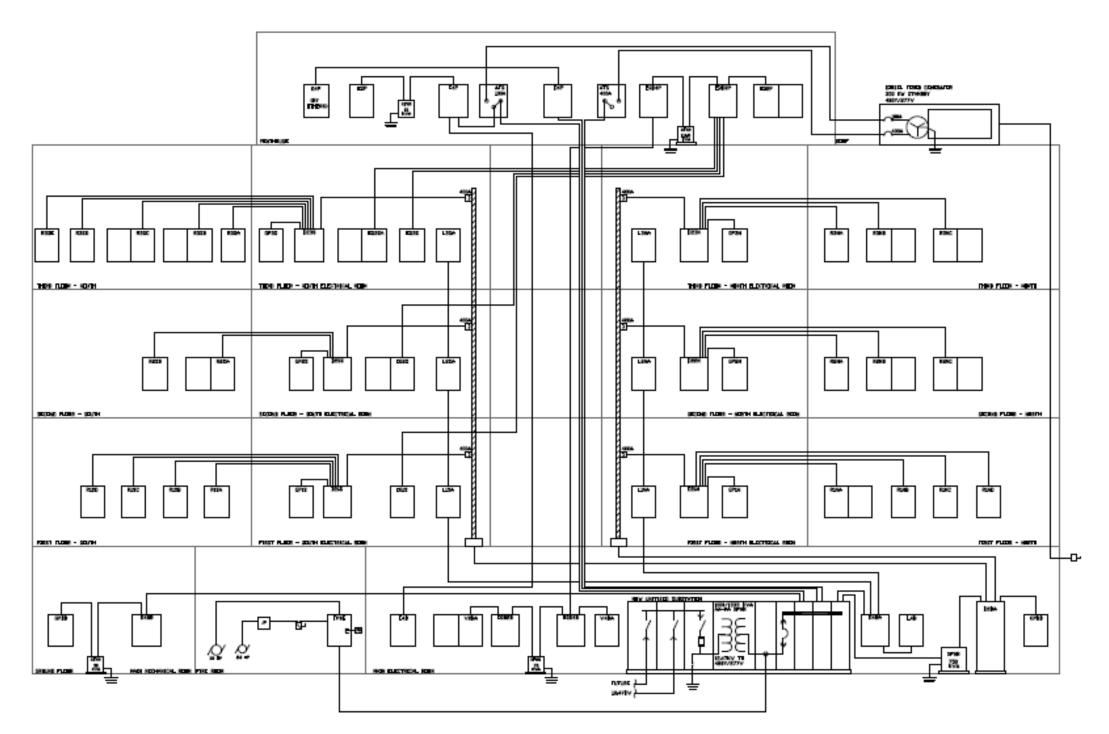


Panelboard Calculations – Panel EDM4P (Revised)

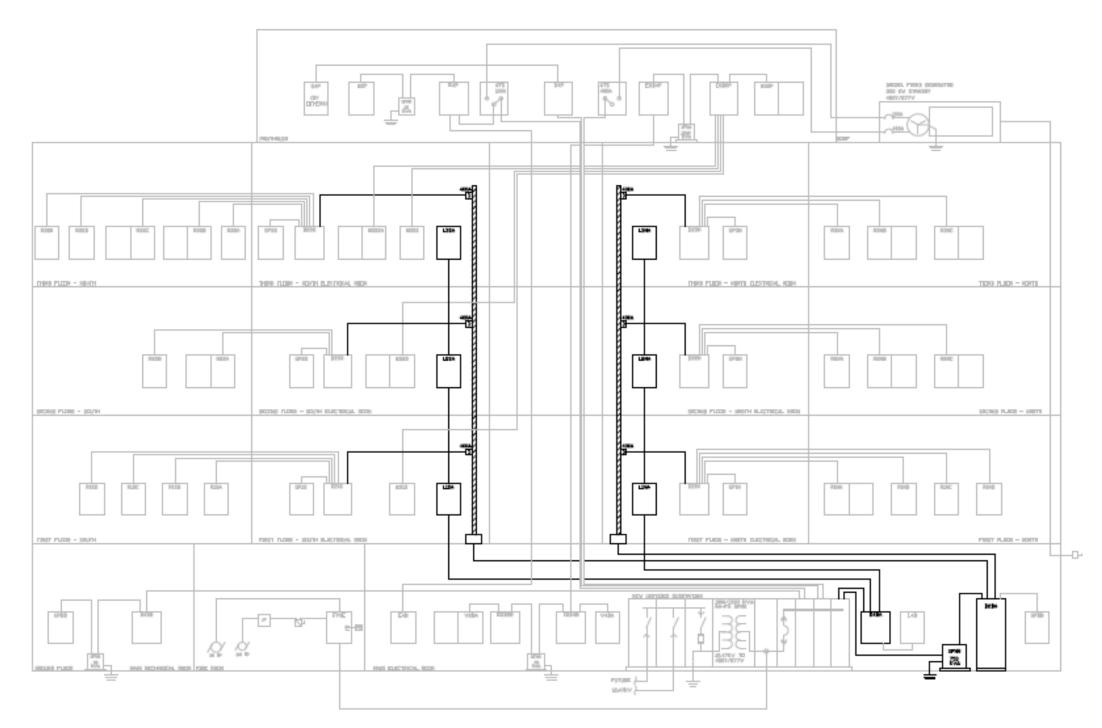
PANELBOARD SIZING WORKSHEET												
		Panel Tag		>	EDM4P	Pa	anel Loc	ation:	North	1 Electrica	Room	
		ominal Phase to Ne			277				3			
		Iominal Phase to Pha			480		Wires		4			
Pos 1	Ph. A	Load Type	Cat.	Location LEC DOWN FRONT	Load 124	Units	I. PF 0.98	Watts 124	VA 127	Rei	marks	
2	A	Fluorescent Ltg Fluorescent Ltg	3	LEC CEN MIDDLE	124	w	0.98	124	127			
3	B	Fluorescent Ltg	3	LEC LEFT MIDDLE	174	w	0.98	174	178			
4	В	Fluorescent Ltg	3	LEC RIGHT MIDDLE	232	W	0.98	232	237			
5	C	Fluorescent Ltg	3	LEC CEN BACK	348	W	0.98	348	355			
6	C A	Fluorescent Ltg Fluorescent Ltg	3	LEC VEST LEC LEFT BACK	68 174	w	0.98	68 174	69 178			
8	Â	Fluorescent Ltg	3	LEC RIGHT BACK	232	w	0.98	232	237			
9	В	Fluorescent Ltg	3	ATR DOWN COR	962	W	0.98	962	982			
10	В	Fluorescent Ltg	3	HUM EMERG DOWN	1200	W	0.98	1200	1224			
11	C C	Fluorescent Ltg Fluorescent Ltg	3	LEC DOWN RAMP LEC DOWN BACK	217 403	w	0.98	217 403	221 411			
13	A	spare	3	LEC STAIRS	37.8	w	1.00	38	38			
14	A	spare	<u> </u>	LEC RAMP	100.8	w	1.00	101	101			
15	В	spare				W	1.00	0	0			
16	B	spare	<u> </u>			W	1.00	0	0			
17	C C	spare	<u> </u>			w	1.00	0	0			
19	Ă	spare	<u> </u>			w	1.00	ŏ	Ö			
20	Α	spare				W	1.00	0	0			
21	В	space				W	1.00	0	0			
22 23	B C	space	<u> </u>			W	1.00	0	0			
23	c	space	<u> </u>			w	1.00	0	0			
25	Ă	space	<u> </u>			w	1.00	ő	Ö			
26	Α	space				W	1.00	0	0			
27	B	space	<u> </u>			W	1.00	0	0			
28 29	B C	space	<u> </u>			w	1.00	0	0			
30	č	space				w	1.00	ŏ	ő			
31	Α	space			0	W	1.00	0	0			
32	Α	space			0	W	1.00	0	0			
33	B	space	<u> </u>		0	W	1.00	0	0			
35	C	space space			0	w	1.00	Ö	0			
36	č	space	<u> </u>		ŏ	w	1.00	ő	Ö			
37	Α	space			0	W	1.00	0	0			
38	A	space			0	w	1.00	0	0			
39 40	B	space	<u> </u>		0	w	1.00	0	0			
41	č	space	<u> </u>		ŏ	w	1.00	ő	ŏ			
42	С	space			0	W	1.00	0	0			
PAN	IEL T	OTAL						4.4	4.5	Amps=	5.5	
PHA		.OADING					kW	kVA	% Total	Amps	% +/-	
		HASE TOTAL	Α				0.8	0.9	19%	3.1	-43.30%	
		HASE TOTAL	B				2.6	2.6	58%	9.5	73.36%	
\vdash		HASE TOTAL	С				1.0	1.1	23%	3.8	-30.06%	
LOA	DU	ATAGORIES		Connected		DF	kW	nano IV/A	PF			
1		receptacles	-	kW 0.0	kVA 0.0	0.70	0.0	kVA 0.0	P'P			
2		computers		0.0	0.0	0.90	0.0	0.0				
3	fl	uorescent lighting		4.3	4.4	1.00	4.3	4.4	0.98		_	
4		HID lighting		0.0	0.0	1.00	0.0	0.0				
5	inc	andescent lighting HVAC fans	-	0.0	0.0	1.00	0.0	0.0				
7				0.0	0.0	1.25	0.0	0.0				
8	k	itchen equipment		0.0	0.0	0.80	0.0	0.0				
	Total	Demand Loads					4.3	4.4			_	
		pare Capacity		25%			1.1	1.1	0.00			
⊢		l Design Loads	<u> </u>				5.4	5.5	0.98	Amps=	6.6	
	i ota	l Design Loads								Amps=		



Riser Diagram - Existing



Riser Diagram – Existing with Affected Equipment Highlighted



Riser Diagram - Proposed

Riser Diagram – Proposed with Affected Equipment Highlighted

Central Transformer – Quick Estimate for Sizing

Panelboard	Rating	Amps	Max Demand	Notes
GPBA	150A	150	31200	
GPBB	100A	100	20800	
GP1N	100A	100	20800	
R1NA	225A	225	46800	
R1NB	60A	60	12480	
R1NC	60A	60	12480	
R1ND	60A	60	12480	
GP1S	100A	100	20800	
R1SA	60A	60	12480	
R1SB	60A	60	12480	
R1SC	60A	60	12480	
R1SD	60A	60	12480	
GP2N	100A	100	20800	
R2NA	60A	60	12480	
R2NB	150A	150	31200	
R2NC	150A	150	31200	
GP2S	100A	100	20800	
R2SA	150A	150	31200	
R2SB	60A	60	12480	
GP3N	100A	100	20800	
R3NA	60A	60	12480	
R3NB	150A	150	31200	
R3NC	150A	150	31200	
GP3S	100A	100	20800	
R3SA	100A	100	20800	
R3SB	150A	150	31200	
R3SC	225A	225	46800	
R3SD	60A	60	12480	
R3SE	100A	100	20800	
D2BA	400A	400	39520	*Subtracts GPBA and DM2P
DM2P	60A	60	12480	

<u>Total VA</u>	688480
Demand Factor	0.7
Spare Capactiy	1.15
<u>Total VA</u>	554226.4
Xfmr KVA Rating	750 KVA

Central Transformer– Detailed Sizing Calculations

<u>Panel</u>	<u>Rece</u>	<u>ptacles</u>	<u>Total Mot</u>	or Loads		<u>r Plex</u> ptacles		<u>nber 4</u> i <u>tlets</u>	<u>J (</u>	<u>Dutlets</u>	<u>Str</u> <u>Recept</u>		for	onnects · Lab Juip.	Lighting	<u>Total</u>
<u>Label</u>	<u>#</u>	<u>VA</u>	<u>Motor</u> <u>VA</u>	<u>Motor</u> <u>W</u>	<u>#</u>	<u>VA</u>	<u>#</u>	<u>VA</u>	<u>#</u>	<u>VA</u>	<u>Length</u>	<u>VA</u>	<u>#</u>	<u>VA</u>	<u>VA</u>	<u>VA</u>
GPBA	23	4140	1210.59	939	1	360		0		0	81	9720	0	0	0	15431
GPBB	8	1440	6852	6306		0		0	1	1920		0		0	0	10212
GP1N	56	10080	1296	976.8	4	1440		0	3	5760		0		0	0	18576
R1NA	31	5580	0	0	8	2880		0		0	314	37680	0	0	0	46140
R1NB	35	6300	0	0	2	720		0		0		0		0	0	7020
R1NC	43	7740	0	0	12	4320		0		0		0		0	0	12060
R1ND	27	4860	0	0	6	2160		0		0		0		0	0	7020
GP1S	58	10440	600	420	7	2520		0	9	17280		0		0	0	30840
R1SA	20	3600	0	0	0	0		0	0	0		0		0	0	3600
R1SB	42	7560	0	0	4	1440		0	0	0		0		0	0	9000
R1SC	40	7200	0	0	1	360		0	0	0		0		0	0	7560
R1SD	21	3780	0	0	3	1080		0	2	3840		0		0	0	8700
GP2N	33	5940	696	556.8	4	1440		0	1	1920		0	6	11520	0	21516
R2NA	36	6480	0	0	1	360	2.5	4800	1	1920	23	2760		0	0	16320
R2NB	105	18900	0	0	16	5760		0	3	5760	22.5	2700		0	0	33120
R2NC	34	6120	0	0	11	3960		0	3	5760	41	4920		0	0	20760
GP2S	49	8820	0	0	14	5040		0		0		0	6	11520	0	25380
R2SA	45	8100	0	0	12	4320	2	3840	2	3840	42	5040	2	3840	0	28980
R2SB	79	14220	0	0	3	1080		0		0		0		0	0	15300
GP3N	44	7920	1296	1021.8	5	1800		0	3	5760		0	4.5	8640	0	25416
R3NA	61	10980	0	0	2	720		0	1	1920	8	960		0	0	14580
R3NB	45	8100	0	0	5	1800	3	5760	2	3840	45.5	5460		0	0	24960
R3NC	41	7380	0	0	2	720	4	7680	2	3840	58	6960		0	0	26580
GP3S	40	7200	480	384	4	1440		0		0		0		0	0	9120
R3SA	81	14580	0	0	8	2880		0	2	3840	17	2040	3	5760	0	29100
R3SB	38	6840	0	0	5	1800	2	3840	2	3840	76	9120		0	0	25440
R3SC	63	11340	0	0	0	0	20	38400	5	9600		0		0	0	59340
R3SD	32	5760	0	0	4	1440	1	1920	1	1920	11.5	1380		0	0	12420
R3SE	48	8640	0	0	3	1080	2	3840	2	3840	50	6000		0	0	23400
D2BA	0	0	0	0	0	0	0	0	0	0	0	0	14	26880		26880
DM2P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16865	16865
Total	1278	230040	12430.59	10604.4	147	52920	36.5	70080	45	86400	789.5 94740		35.5	68160	16865	631636

Total Demand Load **Spare Capacity** <u>Total VA</u> Xfmr KVA Rating

Central Transformer– Detailed Motor Calculations

<u>Panel</u>				<u>Motor 1</u>							<u>Motor 2</u>							Motor 3							<u>Motor 4</u>							<u>Motor 5</u>			
<u>Label</u>	<u>Motor</u> <u>HP</u>	<u>#</u>	<u>FLC</u>	Voltage	<u>PF</u>	<u>VA</u>	<u>w</u>	Motor <u>HP</u>	<u>#</u>	<u>FLC</u>	<u>Voltage</u>	<u>PF</u>	<u>VA</u>	<u>w</u>	<u>Motor</u> <u>HP</u>	<u>#</u>	<u>FLC</u>	<u>Voltage</u>	<u>PF</u>	<u>VA</u>	<u>w</u>	<u>Motor</u> <u>HP</u>	<u>#</u>	<u>FLC</u>	<u>Voltage</u>	<u>PF</u>	<u>VA</u>	<u>w</u>	<u>Motor</u> <u>HP</u>	<u>#</u>	<u>FLC</u>	<u>Voltage</u>	<u>PF</u>	<u>VA</u>	w
GPBA	0.05	2	1.25	120	1.00	300	300	-	1	0.088	120	0.85	10.59	9	0.2	1	5	120	0.70	600	420	0.1	1	2.5	120	0.70	300	210	-	-	-	-	-	0	0
GPBB	0.1	1	2.5	120	0.70	300	210	0.25	1	5.8	120	0.80	696	557	0.08	2	2.2	120	0.70	528	370	0.17	1	4.4	120	0.70	528	370	-	2	20	120	1.00	4800	4800
GP1N	0.2	1	5	120	0.70	600	420	0.25	1	5.8	120	0.80	696	557	-	1	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1NA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	I	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1NB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1NC	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1ND	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
GP1S	0.2	1	5	120	0.70	600	420	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1SA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1SB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1SC	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R1SD	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
GP2N	0.25	1	5.8	120	0.80	696	556.8	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R2NA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R2NB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R2NC	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
GP2S	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R2SA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R2SB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
GP3N	0.1	1	2.5	120	0.70	300	210	0.25	1	5.8	120	0.80	696	556.8	0.05	2	1.25	120	0.85	300	255	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3NA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3NB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3NC	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
GP3S	0.14	1	4	120	0.80	480	384	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3SA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3SB	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3SC	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3SD	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
R3SE	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
D2BA	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0
DM2P	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0	-	-	-	-	-	0	0

Breakdown of Electrical Take-Off for Existing Equipment

Existing Circuit Breakers:

<u>FLOOR</u> <u>LEVEL</u>	ROOM NAME	FROM	<u>TO</u>	SIZE	<u>COST</u>
1st Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	L1SA	60A	\$1,084.05
1st Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	D21S	200A	\$2,786.40
2nd Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	L2SA	60A	\$1,084.05
2nd Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	D22S	200A	\$2,786.40
3rd Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	L3SA	60A	\$1,084.05
3rd Floor	SOUTH ELEC. ROOM	SOUTH BUS DUCT	D23S	200A	\$2,786.40
1st Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	L1NA	60A	\$1,084.05
1st Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	D21N	200A	\$2,786.40
2nd Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	L2NA	60A	\$1,084.05
2nd Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	D22N	200A	\$2,786.40
3rd Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	L3NA	60A	\$1,084.05
3rd Floor	NORTH ELEC. ROOM	NORTH BUS DUCT	D23N	200A	\$2,786.40
			Tota	L	\$23,222.70

Existing Panelboards:

<u>TAG</u>	<u>VOLTAGE</u> <u>SYSTEM</u>	<u>MAIN</u> <u>SIZE</u>	<u>MLO</u> <u>OR</u> <u>MCB?</u>	<u>FLOOR</u> <u>LEVEL</u>	ROOM NAME	<u>REMARKS</u>	<u>COST</u>
L1SA	480Y/277V,	60	MLO	FIRST	SOUTH ELEC.	_	
LIGH	3 PH, 4W	00	MLO	FLOOR	ROOM		\$2,841.75
L2SA	480Y/277V,	60	MLO	SECOND	SOUTH ELEC.		
L25A	3 PH, 4W	00	MLO	FLOOR	ROOM	-	\$2,841.75
L3SA	480Y/277V,	60	МО	THIRD	SOUTH ELEC.		
LSSA	3 PH, 4W	00	MLO	FLOOR	ROOM	-	\$2,841.75
L1NA	480Y/277V,	60	MLO	FIRST	NORTH ELEC.		
LINA	3 PH, 4W	00	MLO	FLOOR	ROOM	-	\$2,841.75
L2NA	480Y/277V,	60	MLO	SECOND	NORTH ELEC.		
L2NA	3 PH, 4W	00	MLO	FLOOR	ROOM	-	\$2,841.75
D4BA	480Y/277V,	400	MCB	BASEMENT	MAIN ELEC.		\$8.066.25
D4BA	3 PH, 4W	400	MCB	BASEMENI	ROOM	-	\$8,000.25
DIDA	208Y/120V,	400	MCD	DACEMENT	MAIN ELEC.		\$9.066. 25
D2BA	3 PH, 4W	400	MCB	BASEMENT	ROOM	-	\$8,066.25
						<u>Total</u>	\$30,341.25

Existing Feeders:

		NO	<u>C0</u>	NDUIT				CON	DUCTORS (P	ER SET)				
FROM	<u>T0</u>	NO. OF	<u>(PF</u>	CR SET)	<u>P</u>]	HASE CONDU	UCTORS	NE	UTRAL CONE	UCTORS		GROU CONDUC		<u>COST</u>
		<u>SETS</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>No.</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>No.</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>No.</u>	<u>SIZE</u>	<u>LENGTH</u>	
SWB-1	South Bus Duct	2	3"	230	3	350KCMIL	240	1	350KCMIL	240	1	1AWG	240	\$38,623.77
South Bus Duct	L1SA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
South Bus Duct	XFMR A	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR A	D21S	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
South Bus Duct	L2SA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
South Bus Duct	XFMR B	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR B	D22S	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
South Bus Duct	L3SA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
South Bus Duct	XFMR C	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR C	D23S	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
SWB-1	North Bus Duct	1	3"	95	3	350KCMIL	105	1	350KCMIL	105	1	1AWG	105	\$8,305.81
North Bus Duct	L1NA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
North Bus Duct	XFMR D	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR D	D21N	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
North Bus Duct	L2NA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
North Bus Duct	XFMR E	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR E	D22N	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
North Bus Duct	L3NA	1	1"	6	3	6AWG	10	1	6AWG	10	1	10AWG	10	\$110.04
North Bus Duct	XFMR F	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR F	D23N	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
SWB-1	D4BA	1	3 1/2"	30	3	600KCMIL	35	1	600KCMIL	35	1	3AWG	35	\$3,998.16
D4BA	XFMR G	1	2"	6	3	3/0AWG	10	0	3/0AWG	10	1	6AWG	10	\$294.81
XFMR G	D2BA	1	3 1/2"	6	3	600KCMIL	10	1	600KCMIL	10	1	3AWG	10	\$1,063.53
		•										-	<u>Total</u>	\$61,096.37

Existing Bus Duct:

<u>BUILDING</u> <u>SIDE</u>	LENGTH	VOLTAGE	RATING	<u>COST</u>
SOUTH	40	480Y/277V	600A	\$11,340.00
NORTH	40	480Y/277V	600A	\$11,340.00
			<u>Total</u>	\$22,680.00

Existing Transformers:

<u>Label</u>	<u>Level</u>	<u>Room</u>	<u>KVA</u> <u>Rating</u>	<u>Primary</u> <u>Voltage</u>	<u>Secondary</u> <u>Voltage</u>	<u>Type</u>	<u>Temp.</u> <u>Rise</u>	<u>Taps</u>	Mounting	<u>Cost</u>
А	1st Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
В	2nd Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
С	3rd Floor	South Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
D	1st Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
Е	2nd Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
F	3rd Floor	North Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
G	Basement	Main Electrical	112.5	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$8,118.90
									<u>Total</u>	\$56,832.30

Breakdown of Electrical Take-Off for Existing Equipment

Proposed Circuit Breakers:

FLOOR LEVEL	ROOM NAME	<u>FROM</u>	<u>TO</u>	<u>SIZE</u>	<u>COST</u>
1st	SOUTH ELEC.	SOUTH BUS	D21S	400A	\$5,089.50
Floor	ROOM	DUCT	D215	400A	\$5,089.50
2nd	SOUTH ELEC.	SOUTH BUS	D22S	400A	\$5,089.50
Floor	ROOM	DUCT	D223	400A	\$5,089.50
3rd	SOUTH ELEC.	SOUTH BUS	D23S	400A	\$5,089.50
Floor	ROOM	DUCT	D255	400A	\$3,089.30
1st	NORTH ELEC.	NORTH BUS	D21N	400A	\$5,089.50
Floor	ROOM	DUCT	DZIN	400A	\$3,089.30
2nd	NORTH ELEC.	NORTH BUS	D22N	400A	\$5,089.50
Floor	ROOM	DUCT	DZZN	400A	\$3,089.30
3rd	NORTH ELEC.	NORTH BUS	DOM	400 4	¢5 000 50
Floor	ROOM	DUCT	D23N	400A	\$5,089.50
			<u>To</u>	tal	\$30,537.00

Proposed Panelboards:

<u>TAG</u>	<u>VOLTAGE</u> <u>SYSTEM</u>	<u>MAIN</u> <u>SIZE</u>	<u>MLO</u> <u>OR</u> <u>MCB?</u>	<u>FLOOR</u> <u>LEVEL</u>	<u>ROOM</u> <u>NAME</u>	<u>REMARKS</u>	<u>COST</u>
L1SA	480Y/277V, 3 PH, 4W	100	MLO	FIRST FLOOR	SOUTH ELEC. ROOM	FEED THROUGH	\$2,841.75
L2SA	480Y/277V, 3 PH, 4W	100	MLO	SECOND FLOOR	SOUTH ELEC. ROOM	FEED THROUGH	\$2,841.75
L3SA	480Y/277V, 3 PH, 4W	100	MLO	THIRD FLOOR	SOUTH ELEC. ROOM	FEED THROUGH	\$2,841.75
L1NA	480Y/277V, 3 PH, 4W	100	MLO	FIRST FLOOR	NORTH ELEC. ROOM	FEED THROUGH	\$2,841.75
L2NA	480Y/277V, 3 PH, 4W	100	MLO	SECOND FLOOR	NORTH ELEC. ROOM	FEED THROUGH	\$2,841.75
L3NA	480Y/277V, 3 PH, 4W	100	MLO	THIRD FLOOR	NORTH ELEC. ROOM	FEED THROUGH	\$2,841.75
D2BA	208Y/120V, 3 PH, 4W	2500	МСВ	BASEMENT	MAIN ELEC. ROOM	SWITCHBOARD	\$32,711.85
						<u>Total</u>	\$49,762.35

Proposed Feeders:

		<u>NO.</u>	<u>C0</u>	NDUIT				<u>CO</u>	NDUCTORS (PER SET)				
FROM	<u>TO</u>	OF	<u>(PF</u>	ER SET)	<u>P</u>]	HASE CONDU	UCTORS	<u>NE</u>	UTRAL CONE	DUCTORS	GR	OUND COND	UCTORS	<u>COST</u>
		<u>SETS</u>	<u>SIZE</u>	LENGTH	<u>No.</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>No.</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>No.</u>	<u>SIZE</u>	LENGTH	
SWB-1	D4BA	1	2 1/2"	30	3	4/0AWG	35	1	4/0AWG	35	1	4AWG	35	\$1,903.74
D4BA	L1SA	1	1 1/4"	245	3	3AWG	255	1	3AWG	255	1	8AWG	255	\$5,025.78
L1SA	L2SA	1	1 1/4"	10	3	3AWG	15	1	3AWG	15	1	8AWG	15	\$259.07
L2SA	L3SA	1	1 1/4"	10	3	3AWG	15	1	3AWG	15	1	8AWG	15	\$259.07
D4BA	L1NA	1	1 1/4"	110	3	3AWG	120	1	3AWG	120	1	8AWG	120	\$2,321.19
L1NA	L2NA	1	1 1/4"	10	3	3AWG	15	1	3AWG	15	1	8AWG	15	\$259.07
L2NA	L3NA	1	1 1/4"	10	3	3AWG	15	1	3AWG	15	1	8AWG	15	\$259.07
SWB-1	XFMR	3	3"	15	3	400KCMIL	10	0	400KCMIL	10	1	2/0AWG	10	\$2,631.89
XFMR	D2BA	7	3"	6	3	500KCMIL	10	1	500KCMIL	10	1	350KCMIL	10	\$6,907.95
D2BA	South Bus Duct	4	3"	230	3	350KCMIL	240	1	350KCMIL	240	1	3/0AWG	240	\$80,228.34
South Bus Duct	D21S	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
South Bus Duct	D22S	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
South Bus Duct	D23S	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
D2BA	North Bus Duct	4	3"	95	3	350KCMIL	105	1	350KCMIL	105	1	3/0AWG	105	\$34,527.33
North Bus Duct	D21N	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
North Bus Duct	D22N	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
North Bus Duct	D23N	2	2"	10	3	3/0AWG	15	1	3/0AWG	15	1	3AWG	15	\$1,148.31
													<u>Total</u>	\$141,472.34

Proposed Bus Duct:

<u>BUILDING</u> <u>SIDE</u>	LENGTH	VOLTAGE	RATING	COST
SOUTH	40	208Y/120V	1200A	\$18,360.00
NORTH	40	208Y/120V	1200A	\$18,360.00
			Total	\$36,720.00

Proposed Transformer:

Label	Level	<u>Room</u>	<u>KVA</u> <u>Rating</u>	<u>Primary</u> <u>Voltage</u>	<u>Secondary</u> <u>Voltage</u>	<u>Type</u>	<u>Temp.</u> <u>Rise</u>	<u>Taps</u>	Mounting	<u>Cost</u>
AA	Basement	Main Electrical	750	480Δ	208Y/120	Dry Type	150 °C	(4) 2.5%	Floor Mounted With Pad	\$46,737.00

Copper to Aluminum Feeders – Full Calculations and Measurements

								Copper Pricing									A	luminum H	Pricing				
<u>Start</u>	End	<u>Wires</u> (CLF)	Conduit (LF)	<u># of</u>	Pha Pha	<u>se</u>	1	Neutral	Grou	nd	Cond	<u>luit</u>		<u># of</u>	Phase	<u>e</u>	Neutra	al	Grou	Ind	Cor	<u>ıduit</u>	
				Sets	<u>Size</u>	Price/CLF	<u>Size</u>	Price/CLF	<u>Size</u>	Price/ CLF	<u>Size</u>	Price/ LF	<u>Total</u>	<u>Sets</u>	Size	Price/ CLF	<u>Size</u>	Price/ CLF	<u>Size</u>	Price/ CLF	<u>Size</u>	Price/ LF	<u>Total</u>
SWB-1	NORTH DUCT	1.05	95	2	350KCMIL	1,305.45	350KCMIL	1,305.45	1AWG	386.10	3"	25.45	16,611.62	2	500KCMIL	641.25	500KCMIL	641.25	2/0AWG	265.95	3"	25.45	10,780.02
NORTH DUCT	L1NA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
NORTH DUCT	XFMR 1	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 1	D21N	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D21N	GP1N	0.15	10	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	290.66	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	232.94
D21N	R1NA	0.55	50	1	4/0AWG	845.10	4/0AWG	845.10	4AWG	224.78	2 1/2"	21.40	3,052.72	1	300KCMIL	484.65	300KCMIL	484.65	2AWG	155.93	2 1/2"	21.40	2,221.86
D21N	R1NB	0.65	60	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	848.78	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	866.33
D21N	R1NC	0.9	85	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	1,187.46	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,215.47
D21N	R1ND	0.75	70	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	984.25	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,005.99
NORTH DUCT	L2NA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
NORTH DUCT	XFMR 2	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 2	D22N	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D22N	GP2N	0.25	20	1	1AWG	386.10	1AWG	386.10	6AWG	159.30	1 1/2"	9.75	620.87	1	2/0AWG	265.95	2/0AWG	265.95	4AWG	121.50	2"	11.65	529.34
D22N	R2NA	0.9	85	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	1,187.46	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,215.47
D22N	R2NB	0.4	35	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	1,214.53	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	951.01
D22N	R2NC	0.7	65	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	2,169.11	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	1,707.95
NORTH DUCT	L3NA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
NORTH DUCT	XFMR 3	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 3	D23N	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D23N	GP3N	0.1	6	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	188.24	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	148.80
D23N	R3NA	0.55	50	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	713.31	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	726.67
D23N	R3NB	0.6	55	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	1,850.92	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	1,455.64
D23N	R3NC	0.5	45	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	1,532.72	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	1,203.32
SWB-1	SOUTH DUCT	2.4	230	2	350KCMIL	1,305.45	350KCMIL	1,305.45	1AWG	386.10	3"	25.45	38,623.77	2	500KCMIL	641.25	500KCMIL	641.25	2/0AWG	265.95	3"	25.45	25,294.41
SOUTH DUCT	L1SA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
SOUTH DUCT	XFMR 4	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

								Copper Pric	ing									Aluminum P	ricing				
Start	End	Wires (CLF)	<u>Conduit</u>	Number	Pha Pha	ise	Neut	tral	Gr	ound	Co	onduit_		Number	Pha	ise	Neu	<u>tral</u>	Gre	ound	Co	onduit (
		<u>(CLF)</u>	<u>(LF)</u>	of Sets	<u>Size</u>	Price/ CLF	Size	Price/CLF	<u>Size</u>	Price/CLF	<u>Size</u>	Price/ LF	<u>Total</u>	of Sets	Size	Price/CLF	<u>Size</u>	Price/CLF	<u>Size</u>	Price/CLF	<u>Size</u>	Price/LF	<u>Total</u>
XFMR 4	D21S	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D21S	GP1S	0.1	6	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	188.24	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	148.80
D21S	R1SA	0.65	60	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	848.78	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	866.33
D21S	R1SB	1.05	100	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	1,390.67	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,424.96
D21S	R1SC	0.55	50	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	713.31	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	726.67
D21S	R1SD	1	95	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	1,322.93	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,355.13
SOUTH DUCT	L2SA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
SOUTH DUCT	XFMR 5	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 5	D22S	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D22S	GP2S	0.1	6	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	271.59	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	205.71
D22S	R2SA	0.45	40	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	1,373.63	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	1,077.17
D22S	R2SB	1	95	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	2,172.56	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	1,829.12
SOUTH DUCT	L3SA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
SOUTH DUCT	XFMR 6	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 6	D23S	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
D23S	GP3S	0.1	6	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	188.24	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	148.80
D23S	R3SA	0.5	45	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	1,065.56	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	890.19
D23S	R3SB	0.65	60	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	2,010.02	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	1,581.80
D23S	R3SC	0.85	80	1	4/0AWG	845.10	4/0AWG	845.10	4AWG	224.78	2 1/2"	21.40	4,776.20	1	300KCMIL	484.65	300KCMIL	484.65	2AWG	155.93	2 1/2"	21.40	3,492.15
D23S	R3SD	0.75	70	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	984.25	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,005.99
D23S	R3SE	0.3	25	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	622.76	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	514.62
SWB-1	D4P	2	190	2	350KCMIL	1,305.45	350KCMIL	1,305.45	1AWG	386.10	3"	25.45	32,101.65	2	500KCMIL	641.25	500KCMIL	641.25	2/0AWG	265.95	3"	25.45	20,993.85
D4P	G4P	0.2	15	1	1AWG	386.10	1AWG	386.10	6AWG	159.30	1 1/2"	9.75	486.95	1	2/0AWG	265.95	2/0AWG	265.95	4AWG	121.50	2"	11.65	411.82
SWB-1	D4BA	0.35	30	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	3,998.16	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	2,513.30
D4BA	XFMR 7	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 7	D2BA	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04

Ann and Richard Barshinger Life Sciences & Philosophy Building Franklin & Marshall College Lancaster, PA

								Copper Pri	cing									<u>Aluminum P</u>	ricing				
<u>Start</u>	End	Wires (CLF)	Conduit (LF)	Number	<u>Ph</u>	ase	Neu	<u>tral</u>	<u>G</u> 1	round	<u>C</u>	onduit		Number	Pha	<u>ise</u>	Neu	<u>tral</u>	<u>G</u>	round	Co	onduit	
		<u>(011)</u>	<u>(131)</u>	of Sets	Size	Price/CLF	Size	Price/CLF	Size	Price/CLF	<u>Size</u>	Price/LF	<u>Total</u>	of Sets	Size	Price/CLF	Size	Price/CLF	<u>Size</u>	Price/CLF	<u>Size</u>	Price/LF	<u>Total</u>
D2BA	GPBA	0.1	6	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	188.24	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	148.80
D4BA	L4B	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
SWB-1	D4BB	2.8	270	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	8,792.96	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	6,948.32
D4BB	XFMR 8	0.1	6	1	6AWG	159.30	-	0.00	10AWG	81.68	3/4"	5.01	86.01	1	4AWG	121.50	-	0.00	8AWG	81.68	1 1/4"	8.29	94.35
XFMR 8	GPBB	0.1	6	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	188.24	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	148.80
SWB-1	ATS 100	2	190	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	4,345.11	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	3,658.23
GEN	ATS 100	0.7	65	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	1,508.36	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	1,265.76
ATS 100	E4P	0.15	10	1	2AWG	317.25	2AWG	317.25	8AWG	116.10	1 1/4"	8.29	290.66	1	1AWG	201.15	1AWG	201.15	6AWG	98.55	1 1/2"	9.75	232.94
E4P	XFMR 9	0.1	6	1	10AWG	81.68	-	0.00	10AWG	81.68	3/4"	5.01	62.72	1	10AWG	65.75	-	0.00	8AWG	81.68	3/4"	5.01	57.94
XFMR 9	E2P	0.1	6	1	8AWG	116.10	8AWG	116.10	10AWG	81.68	3/4"	5.01	84.66	1	6AWG	98.55	6AWG	98.55	8AWG	81.68	1"	6.36	85.74
E4P	E4B	2	190	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	2,645.87	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	2,710.26
SWB-1	ATS 400	2	190	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	23,415.75	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	15,156.45
GEN	ATS 400	0.7	65	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	8,149.55	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	5,240.57
ATS 400	EQD4P	0.15	10	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,625.94	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	954.86
EQD4P	EQD4B	2	195	1	350KCMIL	1,305.45	350KCMIL	1,305.45	4AWG	224.78	3"	25.45	15,855.41	1	500KCMIL	641.25	500KCMIL	641.25	2AWG	155.93	3"	25.45	10,404.11
EQD4B	V4BA	0.1	6	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	110.04	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	106.50
EQD4B	XFMR 10	0.1	6	1	1/0AWG	464.40	-	0.00	6AWG	159.30	1 1/2"	9.75	213.73	1	3/0AWG	309.15	-	0.00	4AWG	121.50	2"	11.65	174.80
XFMR 10	EQD2B	0.1	6	1	250KCMIL	1,008.45	250KCMIL	1,008.45	4AWG	224.78	2 1/2"	21.40	554.24	1	350KCMIL	503.55	350KCMIL	503.55	2AWG	155.93	3"	25.45	369.70
EQD2B	V2BA	0.1	6	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	271.59	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	205.71
EQD4P	XFMR 11	0.1	6	1	3/0AWG	696.60	-	0.00	6AWG	159.30	2"	11.65	294.81	1	250KCMIL	388.80	-	0.00	4AWG	121.50	2 1/2"	21.40	257.18
XFMR 11	EQD2P	0.1	6	1	600KCMIL	2,133.00	600KCMIL	2,133.00	3AWG	264.60	3 1/2"	30.65	1,063.53	2	250KCMIL	388.80	250KCMIL	388.80	1AWG	201.15	2 1/2"	21.40	608.04
EQD2P	EQ1S	1.4	135	1	6AWG	159.30	6AWG	159.30	10AWG	81.68	1"	6.36	1,864.82	1	4AWG	121.50	4AWG	121.50	8AWG	81.68	1 1/4"	8.29	1,913.76
EQD2P	EQ2S	1.25	120	1	4/0AWG	845.10	4/0AWG	845.10	4AWG	224.78	2 1/2"	21.40	7,074.17	1	300KCMIL	484.65	300KCMIL	484.65	2AWG	155.93	2 1/2"	21.40	5,185.86
EQD2P	EQ3S	1.1	105	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	3,441.89	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	2,717.21
EQD2P	EQ3SA	1.1	105	1	1/0AWG	464.40	1/0AWG	464.40	6AWG	159.30	2"	11.65	3,441.89	1	3/0AWG	309.15	3/0AWG	309.15	4AWG	121.50	2"	11.65	2,717.21
EQD2P	EQ2P	0.15	10	1	4/0AWG	845.10	4/0AWG	845.10	4AWG	224.78	2 1/2"	21.40	754.75	1	300KCMIL	484.65	300KCMIL	484.65	2AWG	155.93	2 1/2"	21.40	528.15
										Tota	Copper	Cost	222,195.49							<u>Total</u>	Aluminum	n Cost	157,434.85

20A Breaker Time-Current Trip Curve

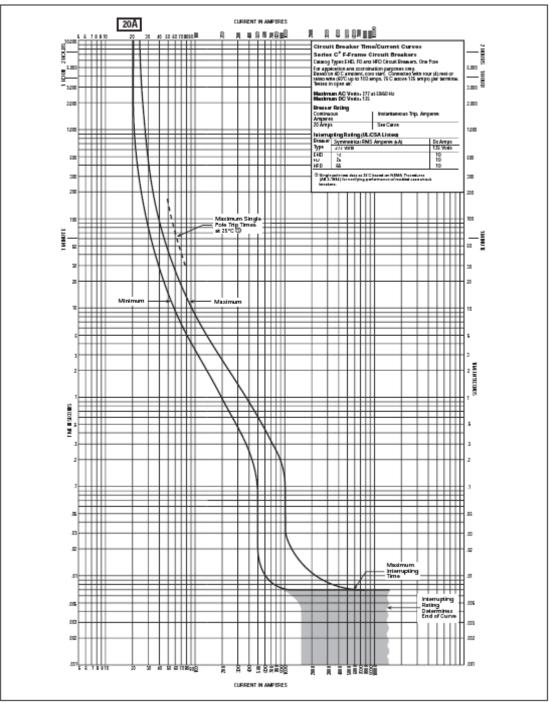


FIGURE 2. TYPES EHD, FD AND HFD 20 AMPERES - CURVE NO. SC-4424-88A

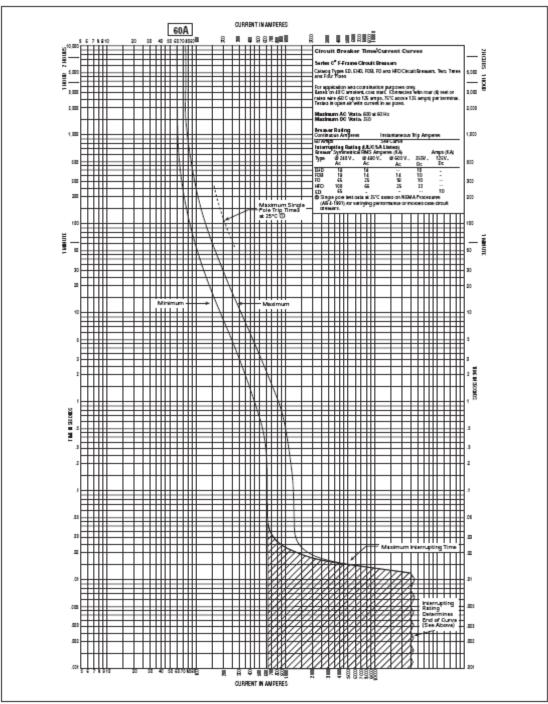
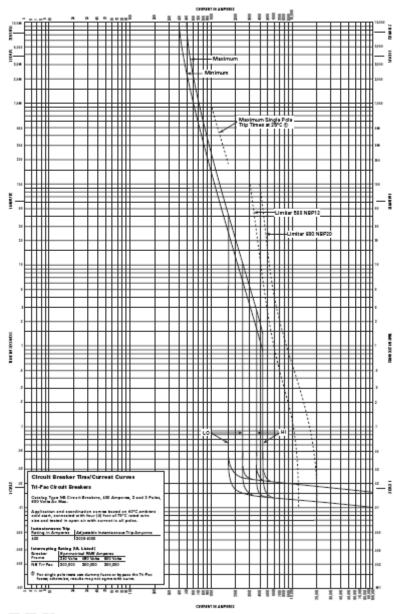


FIGURE 25. TYPES ED, EHD, FDB, FD AND HFD 60 AMPERES - CURVE NO. SC-4142-87B


400A Breaker Time-Current Trip Curve

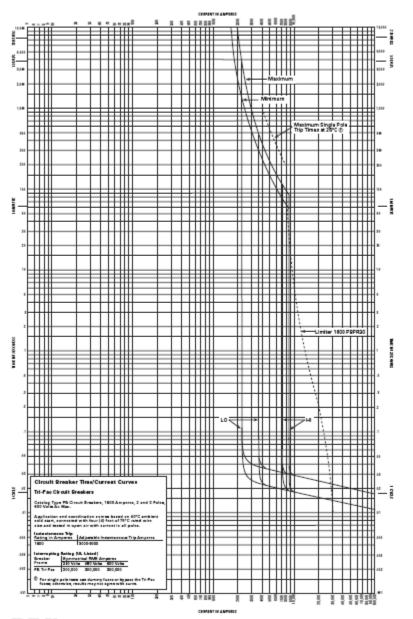
Application Data 29-167C Page 42

AB DE-ION Tri-Pac[®] Circuit Breakers

Type NB, 400 Amperes, 2 and 3 Poles

Curve No. SC-3594-76B

October 1997


1600A Breaker Time-Current Trip Curve

Application Data 29-167C Page 52

AB DE-ION Tri-Pac[®] Circuit Breakers

Type PB, 1600 Amperes, 2 and 3 Poles

Curve No. SC-3604-76B

October 1997

Appendix C

Breadth Studies Supplemental Information

Acoustics Breadth Study Information	
Full Calculations of Reverberation Time	256
Cutsheet for Lecture Hall Ceiling Material	258
Cutsheet for 2 nd Floor Flooring Material	259
Mechanical Breadth Study Information	
Cutsheet for Linear Diffusers	260

Acoustical Breadth – Reverberation Time Calculations

Surface Properties:

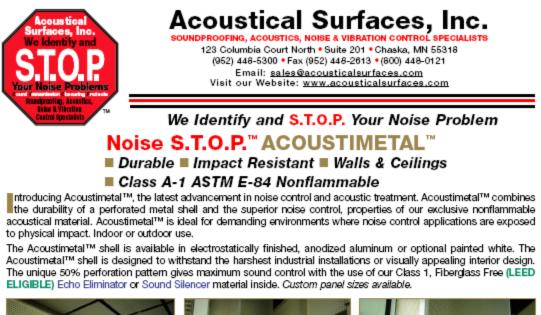
Sautoso	Sound Absorption Coefficient (α) at Frequency						Surface	A	A
<u>Surface</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1000</u>	<u>2000</u>	<u>4000</u>	Area	<u>Assumption</u>	<u>Average α</u>
Carpet	0.05	0.06	0.14	0.37	0.6	0.65	1302.10	Carpet, heavy, over concrete	0.31
Sintered Aluminum Panels	0.4	0.3	0.15	0.1	0.04	0.12	560.13	Metal Roof Deck, plain	0.19
Drywall	0.16	0.07	0.04	0.04	0.03	0.03	1150.37	1/2 GB, 3.625 St, Fiber	0.06
Glass	0.35	0.25	0.18	0.12	0.07	0.04	172.80	Glass window	0.17
Chalkboard	0.01	0.01	0.02	0.02	0.02	0.03	307.40	Clay Brick (Painted)	0.02
Ceiling	0.07	0.21	0.81	0.85	0.93	0.88	1921.80	Perf metal ceiling	0.63
Drywall Ceiling	0.16	0.07	0.04	0.04	0.03	0.03	834.20	1/2 GB, 3.625 St, Fiber	0.06
Desks	0.58	1.18	0.07	0.04	0.03	0.07	456.74	Plywood. 1/4" air	0.33
Wood	0.35	0.22	0.07	0.04	0.03	0.07	416.53	Plywood. 1/4" air	0.13
Door	0.58	0.22	0.07	0.04	0.03	0.07	48.00	Plywood. 1/4" air	0.17
People In Chairs	0.68	0.75	0.82	0.85	0.86	0.86	456.74	Audience, medium uphol	0.80

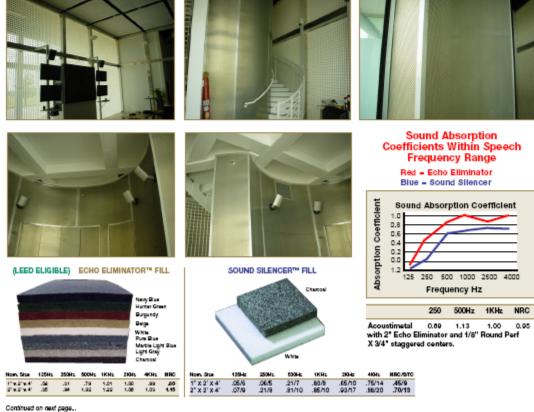
Approximate Volume of Lecture Hall:

Area of Room	FA	Avg Hgt	Volume	
Front Exit	303	12	3636	
Front Desks	781	11.302	8826.862	
Middle Desks	590	9.65	5693.5	
Back Desks	309	8.167	2523.603	
Back Exit	532	10.583	5630.156	

Total Volume	26310.121

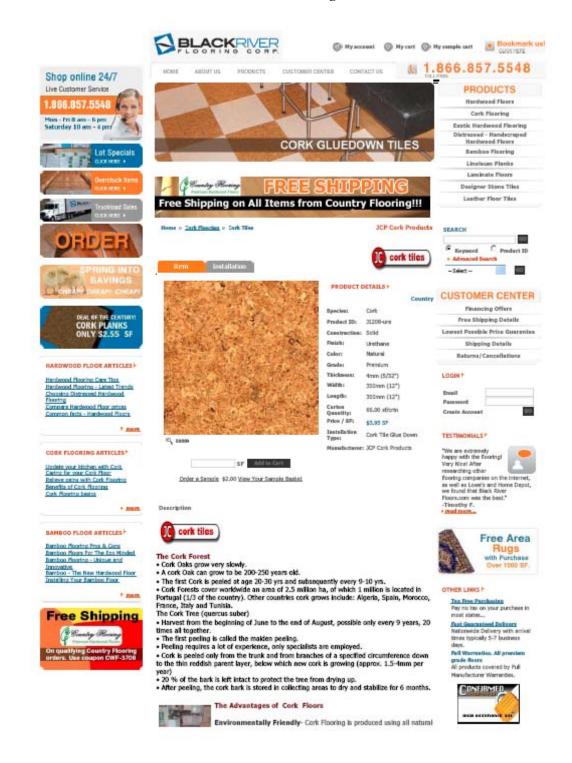
Reverberation Time Calculation:


Galardation	Sound Absorption Coefficient (α) at Frequency							
<u>Calculation</u>	<u>125</u>	<u>250</u>	<u>500</u>	<u>1000</u>	<u>2000</u>	<u>4000</u>		
ΣΑ	1243.30	1476.08	2004.09	2314.44	2696.36	2745		
RT (Solid)	1.06	0.89	0.66	0.57	0.51	0.50		
RT (Porous	1.31	1.11	0.82	0.71	0.61	0.60		

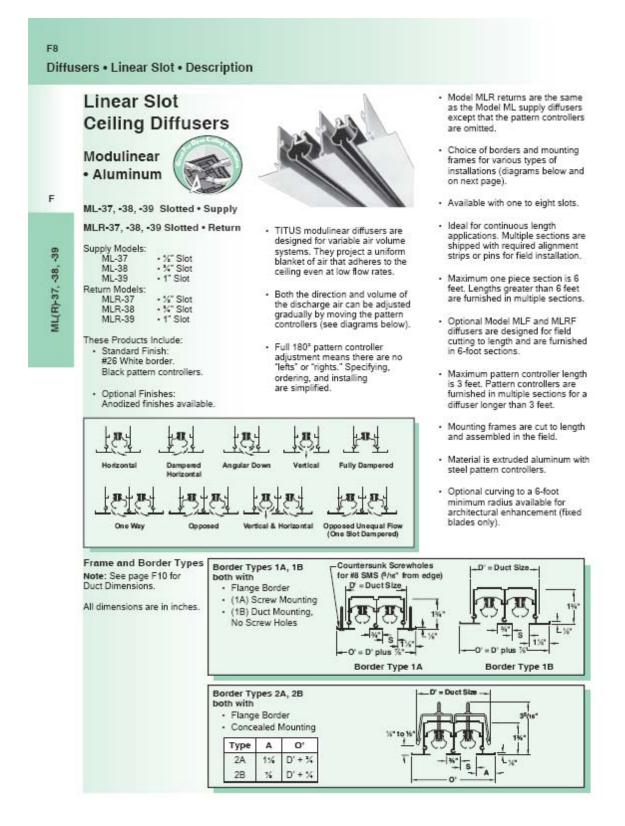

Access to Calculation File:

P:/Thesis Spreadsheets/Acoustics.xls

Acoustical Breadth – New Lecture Hall Ceiling Material Cutsheet



Soundproofing Products • Sorrex[®] Ceiling & Wall Panels • Sound Control Curtains • Equipment Enclosures • Acoustical Baffee & Banners • Sold Wood & Veneer Acoustical Ceiling & Wall Panels • Professional Acide Acoustical • Vitration & Damping Control • File Relationt Acoustics • Neuring Protection • Molitaxe & Impact Resistant Products • File relations • Recursion • Sound Acoustical • Ceiling & Wall Panels • Acoustical Ceiling & Wall Panels • Acoustical • Ceiling & Wall Panels • Acoustical • Ceiling & Wall • Panels • Acoustical • Ceiling • Molecular • Molecular • Ceiling • Ceili



Acoustical Breadth – New 2nd Floor Lab Flooring Material Cutsheet

Mechanical Breadth – New Linear Diffuser Cutsheet

